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Abstract

A first-score auction requires weighing the price-bid against non-price characteristics
of the firm. In this paper, I theoretically and empirically study the welfare implications
of switching between the two leading designs of the scoring rule: linear (“weighted bid”)
and log-linear (“adjusted bid”), when the designer’s preferences for quality and money
are unknown. Motivated by the empirical application, I formulate a new model of scoring
auctions, with two key elements: exogenous quality and a reserve price, and characterize
the equilibrium for a rich set of scoring rules. The data is drawn from the Russian public
procurement sector in which the linear scoring rule was applied from 2011 to 2013. 1
estimate the underlying distribution of firms’ types nonparametrically and simulate the
equilibria for both scoring rules with different weights. The empirical results show that
for any log-linear scoring rule, there exists a linear one, yielding a higher expected quality
and rebate. Hence, at least with risk-neutral preferences, the linear design is superior to
the log-linear.
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1 Introduction

A first-score auction is often used in procurement to determine the best supplier among a variety
of candidates. This mechanism weighs the price bid together with the non-price attributes of
the firm using a publicly known scoring rule, and the participant with the highest score wins
the contract at the price equal to its bid.

There are multiple shapes of the scoring rule, see Dini et al. (2006) and Molenaar and
Yakowenko (2007) for an overview, but two of them are especially widespread. The linear
(“weighted bid”) rule is used, for example, in Delaware, Idaho, and Oregon, while the log-
linear (“adjusted bid”) rule is used in Alaska, Colorado, and Florida, for various public works
contracts. The latter, also known as ”price-quality ratio”, is used extensively in Japan. It is
unclear how a scoring rule is chosen in any given case, and the existing literature offers limited
guidance on how to rank them. The theoretical literature was focused primarily on the optimal
mechanism design and the differences between various auction formats, such as first-score and
second-score, see Che (1993), Asker and Cantillon (2008) and Asker and Cantillon (2010), but
not on the comparisons of the existing shapes of the scoring rule.

This paper is the first to compare the two leading designs of the scoring rule — linear and
log-linear — in a first-score environment, and to rank them in terms of welfare using a structural
approach. To achieve this goal, I formulate a novel model of scoring auctions, which allows for
both linear and log-linear cases, and derive a tractable equilibrium characterization. I employ
the equilibrium structure to analyze a novel dataset on bidding and quality assessments in
Russian procurement auctions, and propose a computationally feasible procedure for nonpara-
metric estimation and simulation of counterfactuals. Finally using the simulated equilibria, I
compare the two designs in terms of welfare.

I leverage a novel dataset on bidding behavior and relevant quality measurements in scoring
auctions using a public archive of Russian procurement auctions which took place from 2011
to 2013. Through this period, 46,387 contracts were assigned using the scoring auction format,
across multiple industries and regions of the country. I select 3,228 auctions, based on criteria,
such as uniformity of the scoring procedure and low market concentration. The data are split
into ten parts based on the type of economic activity and the weight in the scoring formula.

The data exhibit two distinct features. First, all auctions in the sample use quality mea-
surements such as a firm’s experience, qualification of firm’s personnel, or previous successful
contracts. These characteristics cannot be exchanged for cost reduction in the short run, which
I will exploit in the model by treating them as exogenous (nonstrategic). Second, the reserve
price is chosen by a significant portion of bidders, a phenomenon that is often referred to as
bunching.

Clearly, the model should reflect the patterns observed in the data. However, none of the
existing models feature a reserve price, and the quality is always assumed to be a strategic choice
variable. While the endogenous quality could be, to some degree, considered as a generalization
of exogenous quality, the addition of the reserve price creates a distinct theoretical challenge due
to its interaction with the scoring rule. Indeed, from the viewpoint of the score, the constraint
is variable, so it might be binding for some firms, thus producing the bunching.

I build a novel model of a scoring auction in which quality is exogenous and the reserve
price is explicitly set. The key to solving the model is to think of the firm’s strategy as an
unconstrained choice of the score, which is later censored at the reserve price constraint. Due
to the feedback loop between the strategic shading and the expectations about the bunch, an



additional level of endogeneity appears that was not featured in classic auction models. Despite
its complexity, the model remains tractable with a wide set of scoring rules, which I call affine,
nesting both linear and log-linear rules.

A construction of the equilibrium and a proof of its existence and uniqueness are the main
theoretical results in this paper. At the core of the equilibrium is a one-dimensional strategy that
captures the unconstrained choice of the score, pinned down by a simple (ordinary) differential
equation. Moreover, this strategy is similar to the bidding strategy in a classic first-price
auction, allowing the traditional nonparametric estimators to be applied.

To estimate the joint distribution of firm’s cost and quality pairs from the observed bid and
quality pairs, I use an algorithm similar to the two-step smoothing procedure in Guerre et al.
(2000). In the first step, I use kernel smoothing and the optimality conditions derived from the
model to estimate the amount of strategic shading from the observed scores.

In the second step, I use kernel smoothing to recover the joint distribution of bids and quality,
while ignoring the bids equal to the reserve price. I use the boundary correction advocated in
Hickman and Hubbard (2015) to estimate the density at the boundary, that is, the bids just
below the reserve price. Finally, by reversing the shading, I recover the joint distribution of
costs and quality wherever it is fully identified.

The last piece of the puzzle is the part of the distribution of costs and quality that maps
into the reserve price, which I could not recover from the second step. Since there are multiple
distributions that are consistent with the data, I pick a simple one. Namely, I extrapolate the
missing part of the distribution from the boundary, that is, from the bids that were placed just
below the reserve price. The final estimator therefore has a semiparametric flavor.

To relax some of the restrictions that the model puts on the data, I investigate the implica-
tions of auction-level heterogeneity. By assuming a multiplicative error term, I show that it has
no impact on the estimation as long as it affects the reserve price in the same way as it affects
the cost. This means that instead of the actual bids, I can simply use the normalized bids on
a scale between 0 and 100, where 100 stands for the reserve price. For this to be empirically
justified, I need evidence that the reserve price serves as a signal of the scale of the contract. I
find such evidence in the regulation behind the data.

Finally, I am able to simulate the equilibria in both the default and the counterfactual
scoring designs and, additionally, pick an arbitrary weight in the scoring formula. However,
two problems prevent us from making decision on the mechanism choice right away. First, it
is not absolutely clear which log-linear scoring rule to pick, as they vary by the weight in the
scoring formula. Second, the welfare of the scoring auction is measured, at the very least, in
two dimensions: expected quality and expected rebate, and so the two scoring rules might not
necessarily be successfully ranked.

To overcome these problems, I propose the following approach. For each of the two scoring
designs, I construct a frontier in the space of expected quality and rebate, spanned by the
weight in the scoring formula, see Figure 1. The weight is a natural parameter to vary as it
controls the trade-off between quality and rebate. By fixing a target level of expected quality,
it is then possible to rank the two mechanisms in the remaining dimension.

My main empirical finding is that, based on the available data, for any log-linear scoring
rule, there exists a linear one that is better in terms of rebate while having the same quality.
In other words, the linear frontier is above the log-linear frontier, as seen on Figure 1. This it
is true for every part of my data, see Figure 21 and Figure 22. The monetary loss associated
with a switch to a log-linear rule with the same quality varies between 0.4% and 4%.
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Figure 1: Welfare frontiers for the linear and log-linear families

This ranking may seem surprising, as I am comparing two equally plausible shapes of the
scoring rule. However, there is a strong reason for such results. If the firms were to bid
truthfully in a first-score auction, the mechanism would always pick the score-efficient firm.
As a result, the (truthful) linear frontier would be the frontier of first-best mechanisms in the
space of expected quality and rebate, and the (truthful) log-linear frontier would be below. The
actual frontiers, of course, look slightly different due to the distortions associated with strategic
shading and bunching. First, shading is pushing the truthful frontiers to the left, due to the
informational rents paid to the firms. Second, bunching is pushing them towards the origin due
to the inefficient screening. My empirical findings demonstrate that these distortions are not
sufficient to change the ranking, at least with the available distributions.

Of course, these results implicitly rely on the risk-neutrality of the designer as I am us-
ing expected quality and expected rebate as measures of auction success. Mechanism design
literature has long used expected revenue for ranking various classic auction mechanisms and
I am simply following this tradition. It is possible, however, that when higher moments are
considered, the ranking will change.

1.1 Related literature

The theoretical literature on scoring auctions is sparse compared to that of the classic auctions.
Apart from Asker and Cantillon (2008) and Hanazano et al. (2016), only a few attempts have
been made in — Branco (1997), Dastidar (2014) and Nishimura (2015) — to generalize the
original Che (1993) framework. None of them, however, deals with the reserve price.

The closest model to ours can be found in Hanazano et al. (2016). The authors show how
to solve for the symmetric equilibrium with the most general scoring rule. While losing much
of the tractability of the earlier models, the only new scoring rule (used in practice) that this
generality buys is, again, the log-linear. As in Che (1993) and Asker and Cantillon (2008), the
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quality in this paper is endogenous, and there is no reserve price.

We stress that our model is not a special case of the model of Hanazano et al. (2016); rather,
we study different aspects of the scoring auction. While their focus is on nonlinearities in the
scoring rule, our focus is on the interaction between the scoring rule and the reserve price. Also,
our equilibrium characterization is more tractable due to the exogenous quality and the affine
structure of the scoring rule.

Similar in spirit to our empirical finding of the superiority of the linear design are the
theoretical results on the optimality of quasi-linear scoring rules in Che (1993) and Nishimura
(2015). These papers, however, deal with a special environment, in which the distribution of
firms’ costs and quality is singular and they are already sorted in terms of productivity. The
role of the auction mechanism then narrows to picking the efficient one. In our environment,
the situation is more complex, as sorting is endogenous due to the full support of firm’s cost
and quality and, moreover, imperfect due to the bunching at the reserve price. Consequently,
neither the linear nor the log-linear scoring rules can be generically considered as optimal, even
from the perspective of the score.

The empirical literature comprises of studies of delegation and favoritism in scoring auctions:
Dastidar and Mukherjee (2014), Adani et al. (2016), Huang (2016) and several reduced form
studies of the choice between scoring and price only designs: Lewis and Bajari (2011), Koning
and van de Meerendonk (2014) and Albano et al. (2008). Only a few papers contribute to
the structural modeling of a scoring auction: Hanazano et al. (2016), Takahashi (2014) and
Nakabayashi (2013), however, the questions investigated in these papers do not directly overlap
with ours.

Finally, our model of an affine scoring rule could be used to model bid preferences, such as
the ones studied in Marion (2007) and Krasnokutskaya and Seim (2011). Indeed, the intercept
and the slope of bid in the scoring formula could be thought of as additive and multiplicative
preferences. A firm enjoying the preferential treatment can be interpreted as a high-quality
firm in a scoring auction. However, since our model is symmetric, we require that the firms
treat each other’s bid preferences as random, which might be rejected by the data if the pool
of participants and the preferences are made public prior to the bidding stage.

The rest of the paper is organized as follows. In Section 2, I discuss the institutional
background and the features of our data. In Section 3 and Section 4, I explain the theoretical
and empirical framework for my analysis. In Section 5, we discuss potential heterogeneity
problems and how we address them. In Section 6, I present the empirical findings, and I
conclude in Section 7.



2 Data

We access an electronic archive of all public procurement contracts issued by the Russian federal
government and municipalities between January 2011 and December 2013. Out of the 46,387
contracts that were assigned within the scoring auctions format, we select 3,228 contracts based
on such criteria as similarity of contracts, uniformity of the scoring procedure and low market
concentration. These auctions comprise a total award value of 219.6 million dollars®.

The scoring auction is the most complex and regulated format among all used in Russian
procurement. The contractee, which is typically not a private firm but a public body, that
wishes to start a scoring auction has to follow the detailed instructions written by the Ministry
of Economic Development. The auction process is supervised by a special commission and each
step is made public. The whole process can take more than a month, depending on the size
and complexity of the contract, see Table 1.

] Step \ Timing ‘

1. Formation of the supervising commis- | Prior to the publication.
sion and development of the notification
and relevant tender documentation.

2. Publication of the upcoming auction | -
notification and relevant tender documen-
tation. Starting bid collecting period.

3. Ending bid collecting period, opening | 1-4 weeks since the start of bid collection
quotes and publication of opening proto- | period.

cols.
4. Evaluation of bids and determining the | Up to 10 days since the quotes we opened.
winner. Publication of evaluation proto-
cols and winner announcement.

5. Signing the contract Up to 10 days since the publication of auc-
tion protocols.

Table 1: Scoring auction timing and regulation

The archive consists of three types of files: notifications, protocols and tender documen-
tation. The first two are standardized tables stored in the .xml format. The notification file
contains an announcement of the upcoming auction together with a brief description of the
contract, the industry code and the reserve price. The official site allows anybody to search the
upcoming auctions by the information contained in the notification, thus reducing participation
costs. The protocol file is created after the auction and contains all submitted bids together
with the announcement of the winner. Finally, the documentation is a detailed description of
the contract and the quality assessment, compiled by the contractee, typically in a form of one
or several .doc files.

To link each contract with a certain type of economic activity, we use a 7-digit industry
code called OKPD, extracted from the notifications. This code is an archaic classification of
industries, currently replaced by a newer version OKPD2. We focus on five groups of economic
activity: education, scientific research, legal services, technical services, and security.

lusing the approximate exchange rate of 30 roubles per dollar in 2012
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dataset | industry name OKPD | price total total | total total
name code weight | auctions | bids awards | reserve
inmln $ | in min $
Edu-80 | Education ROHHHF*E 1 0.80 89 225 4.6 5.8
Edu-55 0.55 272 712 13.3 16.1
Sci-80 | Scientific Research | 73***** | (.80 162 487 11.7 17.8
Sci-55 0.55 298 854 30.9 38.0
Leg-80 | Legal Services TH¥HAAE (.80 929 3048 | 5.2 10.9
Leg-55 0.55 55 159 5.6 7.4
Tec-80 | Technical Design | 71%%%** | (.80 936 2917 | 99.5 158.8
Tec-55 0.55 47 129 7.3 9.3
Sec-80 | Security {4HHHHE (.80 409 1181 | 334 42.0
Sec-55 0.55 31 94 8.1 9.6
Total 3228 9806 | 219.6 315.6
Table 2: Auction aggregate statistics
dataset | average | average | average | average | average | average
name | bidder | bidder | bidder | winning | winning | bidders
quality | price score rebate quality
score score % %

Edu-80 | 66.2 23.6 32.1 30.7 79.7 2.5

Edu-55 | 72.9 17.0 42.2 19.6 87.9 2.6

Sci-80 | 61.5 25.0 32.3 32.8 73.8 3.0

Sci-55 | 64.6 18.8 39.4 16.7 85.4 2.9

Leg-80 | 74.7 41.1 47.8 52.3 82.8 3.3

Leg-55 | 59.0 23.0 39.2 17.3 94.5 2.9

Tec-80 | 60.2 28.2 34.6 36.3 74.0 3.1

Tec-55 | 66.2 21.0 41.4 20.8 87.7 2.7

Sec-80 | 74.0 15.7 27.4 19.9 84.7 2.9

Sec-b5 | 56.2 15.0 33.6 13.4 76.6 3.0

Table 3: Auction average statistics

The first group (Edu) consists of contracts for citizen education programs. These types of
services are often purchased by the government when a factory is shut down or experiences a
sharp decrease in labor demand. The type of quality that is required from the firm is measured
in years of operation on the market and the number of people that went through the education
program. The second group (Sci) consists of contracts for sociological, statistical, economic
and other scientific research, with quality being typically some sort of experience, government
accreditation, or the qualification (such as a doctoral degree) of personnel. The third group
(Leg) consists of various legal services, for the most part related to the mandatory yearly
inspection (audit) of firms. Here, quality is measured by the number of audits in the past,
positive reviews from the clients, and also the number of personnel with a proper government
accreditation. The fourth group (Tec) mostly consists of contracts for development of project
documentation and estimates, with quality measurements very similar to (Leg). The fifth



group (Sec) has contracts for maintaining security in various civil buildings and facilities. In
this group, the quality is measured by the experience of the personnel and the availability of
special equipment.

In each of our auctions, a linear scoring formula was used, which can be described as:

score = price weight - price score + (1 — price weight ) - quality score (1)

price score = 100 - (reserve price — price bid )/reserve price (2)

where the price weight parameter is either 0.8 or 0.55. The quality score is assigned to each
firm independently and strictly according to the evaluation criteria described in the contract
documentation. These criteria vary by contract, but the final quality score is always between
0 and 100. Overall, we have 10 different datasets, which we summarize in Table 2.
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Figure 2: Aggregate participation histogram

The participation pattern is similar in all 10 datasets. Approximately 1/2 of the auctions
have 2 bidders, 1/4 with 3 bidders, 1/8 with 4 bidders, etc., see Figure 2. The are a few dozens
of auctions that have a single participant, which we ignore. Since it is a sealed-bid format,
there is no public signal about the number of firms in the upcoming auction, so we will treat it
is unknown.

The rest of the section is organized as follows. First, in Section 2.1, we discuss the institu-
tional background of our data. Then, in Section 2.2, we discuss an example of how quality is
assessed. Finally, in Section 2.3, we discuss certain distributional properties of our data.



2.1 Imnstitutional background

In contemporary Russia, the procurement regulation is very similar to the one in the European
Union and the US, with the only exception that it is more centralized. However, it did not
always look the same, rather it was constantly evolving in accordance with a sequence of federal
laws and presidential decrees, gradually shaping the national procurement system over the last
25 years, see Table 4.

Our data spans the middle of that time period, beginning with the earliest historical records
in year 2011, available at the central e-procurement website, and ending with the major overhaul
of procurement after the adoption of a new federal law in year 2014.

’ federal law \ year \ general regulation \ scoring auction regulation ‘

FZ-60, 1994 | First attempts are made to | Scoring auctions are mostly

UP-305, replace central planning with | unregulated, leaving room for

FZ-97 competitive procurement corruption and preferential

treatment

FZ-94 2006 | Upcoming auction notifica- | The scoring auction format be-
tions become available online, | comes limited to a small range
on local websites. of economic activities

2011 | Explicit procedures for deter- | -
mining the reserve price are in-
troduced.

F7Z-44 2014 | A central auctioning platform | The linear formula is replaced
is created, with access to all | with the minimal bid formula.
past (starting from 2011) and | All time-related quality crite-
upcoming auction notifications | ria are banned.
and protocols.

Table 4: Procurement regulation

In our data, one of the most important details is the way the reserve price is determined.
More precisely, each time a government official sets a reserve price in a procurement auction,
he has to follow the precise instructions recommended by the Russian Ministry of Economic
Development. Typically, the reserve price is an average of three of more anonymous market
offers from the firms in the industry, or the costs of similar contracts completed in the past.

Crucially, all the calculations and references have to be made public, together with the rest
of the tender documentation, prior to the auction. The results of the auction could be even
contested in court if the bidder believed the reserve price to be misleading. This indicates that
the reserve price is also a signaling device that helps firms calibrate their bids.

2.2 Quality of the firm

The quality score is assigned to the firm based on several quality criteria, such as experience,
number of successful contracts, qualification, etc. Even within an industry, there is a significant
variation in the sets of criteria selected for each particular auction and in the evaluation scheme.
This gives rise to an almost infinite variety of schemes for quality evaluation, leaving us no option
but to take the final quality score at face value.



A typical formula for the quality score consists of two criteria:
quality score = first criterion score + second criterion score.

For example, in the Education industry, these are often the number of customers (graduates)
and the number of years that the firm has been operating on the market:

first criterion second criterion
less than 200 customers 20 points | less than 3 years 10 points
between 201 and 500 customers | 30 points | between 4 and 7 years | 20 points
more than 501 customers 60 points | between 8 and 10 years | 30 points
more than 11 years 40 points

Table 5: Quality criteria example 1

The quality evaluation scheme may consist of more than two criteria, or sometimes crite-
ria have sub-divisions. In the following example from Scientific Research industry, quality is
measured using two criteria: number of past contracts and qualification. However, the first
criterion is split into three sub-criteria that correspond to different types of contracts:

first criterion second criterion
type 1 contracts | type 2 contracts | type 3 contracts | qualified personnell
> 5| 30 points | > 2 | 25 points | > 1 | 20 points | > 4 | 25 points
4 24 points | 1 10 points | O 0 points 3 18 points
3 18 points | 0 0 points 2 12 points
2 12 points 1 6 points
1 6 points 0 0 points
0 0 points

Table 6: Quality criteria example 2

Note that in these examples, the evaluation instructions are fixed and do not depend on the
characteristics of actual bidders. This is not always the case in our data. For certain auctions,
the maximal points are assigned to the firm with the maximal among the current bidders
number of customers (years), and all other bidders get proportionally less. We do not include
these auctions in our datasets since they would require a more powerful structural model, able
to deal with scoring formulas that depend on the characteristics of many bidders.

In our datasets, we have pooled together a large number of auctions with qualities of different
nature. Since we take the final score at face value, we essentially assume that the utility of the
designer (as a function of various quality criteria) is aligned with the quality evaluation scheme.
For example, in Table 5, that would mean that 10 quality points are approximately equivalent
to 3 years of experience, or 200 additional customers.

Due to the variety of the schemes and their non-linearity, we will abstain from exact inter-
pretations of quality and treat it as an ordinal measure. In other words, we care about the fact
that more quality is better than less quality, but not about what that quality means.
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2.3 Spikes and bunches

In the examples of the previous section, the functions that map contracts or years into quality
points are bounded from both sides. This means that two firms can be formally different in
terms of their age and experience, but still have the same maximum (or minimum) quality
points. This gives rise to two pronounced spikes in the quality score histogram, see Figure 3,
with the right spike containing approximately 25% of the data (quality between 99 and 100).
Since our model is continuous, we will have to make sure that these distributional anomalies
are smoothed out in the estimation phase. But this will happen automatically since we do not
perform boundary correction in the ¢ dimension. While this might seem like a bad idea because
of over-smoothing at the boundary, it will be, in fact, beneficial for the model because sharp
increases in the estimated density of quality might lead to non-existence of continuous equilibria.
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Figure 3: Aggregate histogram of quality scores.

Another distributional anomaly happens when bidders set their bid exactly at the reserve
price, which we refer to as a bunch at the reserve price, see Figure 4. Approximately 7% of
the data is concentrated in the range of price scores between 0 and 1, out of which 4.5% are
exactly at price score 0. Though it is true that high quality firms tend to bid less aggressively,
only a small fraction of the bunch is attributed to the spike in quality.

To see that the bunch is a separate phenomenon, we drop all the bids with quality greater
than 99. The resulting histogram remains virtually unchanged, see Figure 5, and 3.2% of
bidders still choose to bid exactly the reserve price. However, if we focus on the auctions with
price weight 0.55, the pattern becomes more pronounced, see Figure 6.

This observation indicates that there may be some strategic factor at play that makes the
bidders choose the reserve price with a positive probability. In the theoretical part of the paper,
we will show that this feature is indeed a hallmarc of the scoring auction.
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Figure 4: Aggregate histogram of price scores
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Figure 5: Aggregate histogram of price scores conditional on quality scores below 99
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Figure 6: Aggregate histogram of price scores conditional on quality scores below 99 and price
weight equal to 0.55
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3 Model

A single contract is auctioned among N ex-ante identical, risk-neutral firms. Each firm simul-
taneously and secretly submits its bid b to the auctioneer. Each firm has quality ¢, which,
together with the bid, is mapped into the firm’s score, using a publicly known scoring rule. The
firm with the highest score wins the contract at the price equal to its bid, which can not exceed
a publicly known reserve price 7.

A critical assumption in our model is that ¢ is an exogenous and perfectly verifiable charac-
teristic of the firm, observed by the auctioneer, but not the other firms. The cost c¢ is private,
and there is no technology that allows the firm to exchange it for quality or vice versa.

Assumption 1. Each firm draws (c,q) independently, from the same distribution with a twice
continuously differentiable cdf F, with full support on [0,7] X [q,q].

We consider a broad class of scoring rules that we call affine, which nests the quasi-linear
scoring rules studied in Che (1993) and Asker and Cantillon (2008).

Definition 1. A scoring rule is affine if it can be represented by a function s(b,q):

s(b,q) = a(q) + B(q)(r — b). (3)

Three cases of affine scoring rules are of special interest:

quasi-linear: Bq) =1 = s(b,q) —r=a(q) —b,
linear: Blg) =1, a(q) = wg = s(b,q) =1 =wqg—D,
log-linear: alq) = —r/q”, Blq) =1/¢¥ = —log(—s(b,q)) = wlogq — logb.

Assumption 2. «a(q), 8(q) are twice continuously differentiable, a(q) is strictly increasing, and
B(q) is positive.

Additionally, we assume that some firms will not come to the auction, and the participating
firms hold identical beliefs about the turnout n.

Assumption 3. The turnout is random and follows a discrete distribution with known proba-
bilities p,, where 1 <n < N.

We are looking for a symmetric, pure strategy BNE of this game.

3.1 Equilibrium Structure

We focus on the equilibrium scoring strategy, since the competition holds in the score dimension.

Our first goal is to introduce a function 6(c, q), that we will refer to as the firm’s type, which
can be used as a natural argument of the scoring strategy. We will refer to the level lines of
this function as the iso-types.

Definition 2. Denote the firm’s type by 0(c, q), where

0(c,q) = alq) + B(g)(r —¢). (4)
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The type is similar to the firm’s production potential in Che (1993) and the pseudo-type
in Asker and Cantillon (2008). Without the reserve price, it would completely define the
equilibrium behavior of the firm, due to the affine structure of the scoring rule. Indeed, if 7(s)
is the equilibrium probability of winning associated with a score s, then the firm’s profit can
be written as:

m(s)(b —¢) = m(s)(alq) + B(q)(r — c) =s)/B(q) = =(s)(0 — 5)/B(a),

>
~

firm’s type

which proves that 6 is a sufficient statistic for the optimal choice of the score. This choice,
however, might be infeasible in the presence of the reserve price.

Note that the iso-types depend only on the shape of the scoring rule, in other words they
are exogenous. For the linear scoring rule s = ¢ — 2b these are parallel lines, and for a log-linear
s = —b/q these are rays originating at ¢ = 0, ¢ = 0, see Figure 7.

q A q 4

iso-types X

\ iso-types

Figure 7: Iso-types for a linear and a log-linear scoring rule.

Our second goal is to define two scoring strategies that capture the firm’s optimal choice of
the score, with and without censoring imposed by the reserve price.

Definition 3. Denote the equilibrium scoring strategy by o*(0,q).

This strategy represents the constrained choice of the score, and we will refer to its level
lines as the iso-scores. By definition, it solves the following optimization problem:

c*(0,q) € arg ma(x) 7(s)(0 — s). (5)
s=zalq
The underlying bidding strategy can be easily recovered from the scoring strategy using
formulas 0 = a(q) + B(q)(r —¢) and s = a(q) + B(q)(r — b), which are simply accounting
identities. Note that the situation when the bid is equal to r corresponds to the situation
where the score is equal to a(q).
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Definition 4. Define o(f) = min, o*(0, q) as the equilibrium uncensored scoring strategy.

This strategy represents the unconstrained choice of the score, and its level lines coincide
with the iso-types. By construction, it solves the following optimization problem:

o(f) € arg max 7(s)(0 — s). (6)

A natural conjecture is that the scoring strategy ¢*(0,q) should be derived from o(f) via
censoring at the a(q) threshold. This is not true in general, however, if we introduce a simple
refinement of the equilibrium, this property can be established.

Assumption 4. 0*(0,q) is continuous and a lower score is chosen when indifferent.

Lemma 1. Under Assumption 4, following equation holds:

0*(0,q) = max(c(0), a(q))- (7)

Following equation (7), one can see that the iso-scores are kinked. Consequently, they are
endogenous, as the position of the kink relies on the equilibrium through the ¢(6) function. We
can nevertheless describe them qualitatively. When the score is a function of type, the iso-scores
are aligned with the iso-types, but when the score is a function of quality, the iso-scores are
horizontal. The set of firms that choose the reserve price, which we refer to as the bunching
region, is outlined by the curve traced the kinks of the iso-scores, see Figure 8 for a stylized
illustration.

qA ‘y
bunching bunching
. region \' region
& A &
3 .y
i50-scores \_
. ;’40’ I\
150-scores
s
c c

Figure 8: Iso-scores and the bunching region (grey) for a linear and a log-linear scoring rule.

The equilibrium strategy o*(6,¢q) can be derived from the equilibrium strategy o(6) using
equation (7). Consequently, we only have to characterize the o(f) strategy in order to pin
down the equilibrium. To do that a few additional definitions and a regularity assumption are
required.
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Definition 5. Denote the cumulative distribution functzon of (0,a(q)) by F, and its partial
derivatives by F1 and Fz' Define a function Z(0,0) = (anF" 2(, a))/(an(n—l)ﬁ'””(Q, o))
and a correspondence §(0) = {o € [0,60] : Z(0,0)F(0,0) — (8 — 0)F}(0,0) = 0}, where [0,8] is
the support of 6.

Assumption 5 (Regularity). 6(0) is a function, such that §(0) = a(q) for some 0 in [0, 0].

The role of this assumption will be discussed in detail in Section 3.2. We are now ready to
give a characterization of the equilibrium.

Proposition 1. Under Assumptions 1-5, there exists a unique symmetric BNE in the scoring
auction, with a strictly monotone uncensored scoring strategy o (), that solves:

/ (0 — 0)F{(6,0) . —
o) =6 and o = ~ — or all types in |6, 0]. 8
o=t Z00.0)F(0,0)— (0 - ) g0,y 17 e A

To illustrate the derivation of the differential equation (8), assume that there are two firms
and there is no uncertainty about the turnout. Observe that the equilibrium probability of
winning associated with a score o(6) is equal to the cumulative distribution function F' (0, a(q))
evaluated at (6, 0(@)), which is also the area under the iso-score:

~

m(0(8)) = Prob(c*(0,q) < (6)) = Prob(c(f) < o(6), a(q) < a(8)) = F(0,0(0)).

Indeed, if we switch to the (6, a(q)) coordinates, the probability of winning will be to the
left and below the (6,0) point. Moreover, the boundary of the bunching region will coincide
with the o(f) curve, as they represent the same event when a(q) is equal to o(f). In these
coordinates the bunching region is therefore the area between the 45 degree line and the o(6)
curve. Note that while the o(f) is monotone, the boundary of the bunching region, obtained
by tilting the curve to the left, might have an inflection point.

a4 Aa(q)

bunching
- region

iso-scores

bunching-..:. /
region

180-5coTes
s

— | F(0,0(0))

Figure 9: Iso-scores and the probability of winning (grey) for a linear scoring rule.
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Bunching is typically considered incompatible with the symmetric equilibria in the first price
auctions, as an infinitesimal deviation in the bid generates a sizable increase in the probability
of winning. In the scoring auction, however, this is not the case as competition holds in the
score, rather than the bid dimension. The bunch is spread across different scores due to the
variation in ¢, and so the distribution relevant to the formation of best response is, in fact,
continuous.

We can now derive the first order conditions associated with the optimal choice of the score.

First Order Conditions (2 firms):

marginal cost marginal benefit

~ - ~ S ~ A

F(0,0)do ~ (0 — o) - (F|(0,0)d0 + Fy(0,0)do). (9)
|

bunching effect

The marginal cost of raising the score above the equilibrium can be written as do times the
probability of winning F'(#,0), while the marginal benefit is the profit margin (o — ) times
the marginal increase in the probability of winning. The latter comes from two populations of
firms, see Figure 10. The first are the firms outside the bunch, that have a marginally higher
type 0, captured by the F[(6,0)df term. The second are the firms inside the bunch that have a
marginally weaker constraint on the score, captured by the ﬁ’Q’(é’, o)do term. We call the latter
bunching effect, as it only appears in the presence of bunching.

After dividing both parts of equation (9) by df, replacing do/df with ¢’, and solving for o,
we obtain a special case of the differential equation (8), where Z(6,0) = 1. We will derive it
more rigorously and show that the second order conditions hold in Section 3.3.

Aa(q)

-Fl(0,0)dd

0

Figure 10: Marginal increase in the probability of winning.

While the distribution F' itself is exogenous, the way it enters the first order conditions
is clearly endogenous, as it is evaluated at (f,0). That is because the way expectations are
formed about the strength of the competition depends on the amount of bunching, which in
turn, depends on the amount of equilibrium shading. This creates a feedback loop between the
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equilibrium strategy () and the equilibrium probability of winning (o (6)), which does not
happen in a classic first-price auction, or in a scoring auction with no reserve price.

While the first order conditions are fairly complex due to the equilibrium expectations about
the bunch, the firm’s bidding problem is simple, as all the relevant information is captured by
the observed distribution of scores. The firm then behaves simply as a monopolist operating
over a downward sloping demand curve m(s(b, q)), with a price ceiling r:

max(b —c)m(s(b,q)), s(b,q) = alg) + H@)(r —b).

We are interested in how the monopoly price (equivalently, the optimal bid) responds to an
increase in ¢ or ¢, assuming that the price ceiling does not bind. The first can be considered as
an increase in the monopoly’s marginal cost, which implies an increase in the monopoly price
since b and ¢ are complements in the profit function. The second can be considered as a positive
demand shock that shifts the demand curve upwards. While it is natural to assume that the
monopoly price will increase, this is not necessarily the case. Indeed, from the inverse elasticity
rule we know that the defining factor is the elasticity of demand rather than its volume. If the
optimal bid does not change with a small increase in ¢, the iso-bid will have an inflection point,
as on Figure 11.

For the linear scoring rule, the shift of the demand curve can be offset by a proportional
increase in the marginal cost, so that the profit margins remain the same. Consequently, the
iso-bids will be parallel translations of each other, as on Figure 11.

q 4

.
is0-bids

C

Figure 11: Iso-bids and bunching (grey area).
So far our analysis was for the case of two firms with no uncertainty about the turnout. To

allow for random participation, we need to replace the probability of winning against a random
firm F' with the probability of winning against the strongest opponent firm. This probability is
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captured by a convoluted function )’ pnFN’ n=1 which finds its way into the first order conditions:

First Order Conditions (general):

N N
Y paE" Mo ~ (0 — o) (F{d + Fydo) - . pu(n — 1) F" 2. (10)
n=1

n=1

By introducing the Z (6, o) function we are able to isolate the effect of random participation
in our differential equation:

0 — . ﬁv ﬁv / N nﬁ,n,g
( J) ( l~+ 20 ) =7 = Nznzl p _ . (11)
o - F Dineq Pn(n —1)Fn=2

With a turnout fixed at n, Z is simply equal to 1/(n — 1). Finally, after solving for o', we
obtain our differential equation:
L (-o)F

“ P of (12

Coupled with the initial value o (@) = 0, this differential equation can be solved locally under
standard conditions, however, the solution might not necessarily exist globally for a number of
reasons. In the next section we will focus on the conditions that are sufficient for the existence
of the global solution.

3.2 Regularity, Existence and Uniqueness

The Initial Value Problem in Proposition 1 can be interpreted as a direct instruction to finding
the equilibrium. However, one should be careful when constructing the o () trajectory as there
are two cases how it may fail. N

The first case is when ZF — (6 — o) F} turns into zero thus preventing us from constructing
a global solution. The solution then should be sought in the wider functional space of, possibly
discontinuous, monotone functions. The second case is when F] turns into zero. Then the first
order condition becomes degenerate and the trajectory switches, through a kink, to a different
law of motion: (§ — o)F; = ZF, which can be interpreted as playing against the population of
firms belonging entirely to the bunch. It is even possible for the trajectory to switch between
the two laws of motion multiple times. The role of Assumption 5 is to make sure that the two
previously mentioned cases do not occur, so that we can focus on the most regular scenario.

Recall the definition of the §(#) correspondence:

5(0) = {oe[0,6]: Z(0,0)F(0,0) — (0 — 0)F4(0,0) = 0}.

It is non-empty for all § € [0,0] by the Intermediate Value Theorem, and captures the
set of points in the (0, a(q)) coordinates for which the denominator in the right handside of
the differential equation turns into zero. If, additionally, it is a function, it serves as a lower
boundary to where the o () trajectory can go, because any continuous strategy will by pushed
upwards when approaching 6(6). At the same time, when approaching the 45 degree line,
the o(0) trajectory will be pushed to the right. Consequently, the trajectory always remains
between these two functions:

5(0) < o(6) < 0.
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In the theory of ordinary differential equations, the a(q) = §(f) and «a(q) = 6 curves are
referred to as fences, and together they form what is called an anti-funnel, see Figure 12.
Existence and uniqueness of the trajectory that originates at (6, 6) follows from the theory of
fences and funnels, see Hubbard and West (1997) and Appendix A for more details.

A Q(Q) 0_(9)
N

180-score

Y

5(0)

0

Figure 12: The anti-funnel (grey), the 6() and the () curves.

The first part of Assumption 5 tells that §(@) is a function, thus allowing us to establish
the existence and uniqueness of the global solution to our differential equation. The second
part tells that there exists a 6 such that o(f) > «(q), which means that the trajectory never
passes through the point where F 1 turns into zero. Consequently, there is no switch in the law
of motion and the differential equation correctly represents the first order conditions.

While the first order conditions are clearly necessary, it is not obvious whether they are
sufficient for the equilibrium. To show this we will study a direct mechanism associated with
the game in the next section.

3.3 Pseudo-type and the Direct Revelation Mechanism

We introduce a generalization of the pseudo-type in Asker and Cantillon (2008), which is a
function, designed to be constant along the iso-score lines. Once the pseudo-type is defined, it
can be thought of as a message in the direct mechanism, and the first order conditions can be
derived using the revelation principle.

Definition 6. Denote the firm’s pseudo-type by p(0,q), where
p(0.q) = o~ (c"(0,q))- (13)

By construction, the pseudo-type is constant along the iso-scores and, moreover, coincides
with the type when the reserve price is not binding;:

0, if the reserve price is not binding,
p(0,q) =

a Y (a(0)), if the reserve price is binding.
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The intuition behind the pseudo-type is the following. Since for certain types the reserve
price is binding, the mechanism pools them with higher types (but same quality) all the way
up to the value of o=*(a(q)), which is the only type that would have chosen the reserve price
willingly. The pseudo-type is therefore the type of the firm as perceived by the mechanism in
equilibrium.

Definition 7. Denote the pseudo-type distribution by G(p) and the residual pseudo-type
distribution by G(p), where

G(p) = > G (p). (14)

The distribution of the pseudo-type plays the same role as the distribution of values in a
classic first-price auction. The area under the iso-score is equal to the probability of winning
against a random opponent while choosing the score o(p), see Figure 13.

A a(q) A a(q)

[ |

------ afga)fmmmrmmren e O

0
0, - 02 p(02,q2)
Figure 13: Pseudo-type and the probability of winning (grey).

We can now characterize our uncensored scoring strategy o(f) as an equilibrium strategy
in a direct revelation mechanism where the firm submits the pseudo-type. The optimality
conditions in this game are summarized below:

Direct Revelation Mechanism:
o(0) € argmax(¢ — o (p)) G (p)- (15)

Indeed, the probability of winning against a single opponent by signaling p to the mechanism
is equal to G(p). The expected probability of winning is therefore G(p). The profit conditional
on winning is equal to b — ¢ = (0 — s)/5(q), where the score s is assigned based on the reported
pseudo-type and therefore is equal to o(p).

Notice that the optimality conditions are exactly as in the first-price auction, if we interpret
6 as value, o(f) as the bidding strategy and G as the value distribution. The classic first order
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conditions can be therefore written as:

First Order Conditions (general):

marginal cost marginal benefit
o'(p)- G(p) = (0 —0o(p)) - G'(p). (16)

Since G(0) = F(0,0(0)), the direct mechanism approach gives the same first order conditions
as (10). But even without the first order conditions, the o () strategy can be characterized in
terms of the pseudo-type distribution G by simply applying the Envelope Theorem to (15).

Proposition 2. Under Assumptions 1-5, the equilibrium uncensored scoring strategy o(0) is a
conditional expectation of the highest (among the other firms) pseudo-type below 0:

70) = =17 f 2dG(2) f G(» (17)

As in the classic first-price auction, the second order conditions follow from (and are equiv-
alent to) the monotonicity of o(f), see, for example, Chapter 5 in Krishna (2010). To convince
ourselves that the second order conditions are indeed satisfied in our model, we evaluate the
change in profit when submitting a pseudo-type p while having pseudo-type p:

(6~ o()G(5) ~ 0~ o(p))G(s) -
(5= ()G() + 0~ P)G() — (= o) G(r) — O~ P)Gr) =
| 621+ 0= 26~ © - p)610) -

Jp G(2)dz = (p=p)G(p) = (p = 0)(G(p) — G(p)) < 0.

The change is negative since p = 6 by the definition of the pseudo-type.
Corollary 1. Under Assumptions 1-5, the first order conditions are sufficient.

Formula (17) also demonstrates that o(f) < 6 for all § > 0. As a result, for every level of
quality except for the lowest, the threshold cost ¢(q) for which the firm is willing to pick the
reserve price lies in the interior of the support:

c(q) =r— o (alg) ~ alg) <, forall g > gq.

B(q)

Consequently, as long as the distribution F' has full support, there will be a positive mass of
bids at the reserve price, conditional on every level of quality except for the lowest.

Corollary 2. Under Assumptions 1-5, there is bunching at every level of ¢ > q.

Coupled with G(0 ) F(0,0(0)) and G(p) = S prG*(p), equation (17) pins down the
evolution of both ¢(f) and G(#). From this system of non-linear equations, we can derive a
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system of differential equations which is linear in ¢/, G' and G":

o-G+o-G=0-G, (18)
N

G =G (n—1)p,G"?, (19)
k=2

G =F+F o (20)

By eliminating G’ and G’ we arrive to the same differential equation as in Proposition 1.

3.4 Welfare

In this section, we will introduce three measures of welfare generated by a firm participating in
an auction: firm’s profit, quality and buyer’s rebate r — b; that will be later used to rank the
counterfactual scoring rules. It will be convenient to first analyze the interim version.

Definition 8. For a firm with type 0 and quality q:
interim expected profit:  P(0,q) = (b—c¢)G(p(0,q)),

interim expected quality: Q(0,q) = q¢G(p(0,q)),
interim expected rebate:  R(6,q) = (r —b)G(p(0,q)).

By applying the envelope theorem to (15), we can find the profit as a solution to the
boundary value problem below:

SP(0.0) = G (0(0.0) /5(0). P(ala)q) =0

This allows us to write down the interim expected profit, quality and rebate in the (0, a(q))
coordinates in terms of the residual distribution of the pseudo-type and the pseudo-type itself.
The total expected surplus from a single participating firm is measured by

(r=c)- G(p(0(c,9),0)) = (0 — alq)) - G(p(0,4))/5(q),

which is the area of the marked region in Figure 14. Similarly to a classic first-price auction,
this area is split between firm’s profit and seller’s revenue (in our case, buyer’s rebate) by the
G(p(*,q)) curve, which captures the probability of winning having type 6.

Corollary 3. The interim expected profit, quality and rebate can be computed from the residual
pseudo-type distribution G(p) and the pseudo-type p(0,q) using formulas below:

POD= | G0 a)e/80)

QO,q9) =q-G(p(0,q))
R(0,q) = (0 —alq) - G(p(8,9))/B(q) — P(0,q).
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Figure 14: The firm’s interim profit is the area under the G(p(x,q)) curve, while the buyer’s
interim rebate is the area to the left from the G(p(*,q)) curve.

Had the turnout been fixed, to compute the total ex-ante quality and rebate, we would
average the interim ones with respect to the density of type and quality, and multiply by the
number of participants. Due to random participation, the formulas are more tricky.

Conditional on the turnout n, the total rebate and quality extracted from firms with coor-
dinates (6, q) can be computed by renormalizing the interim ones by G"'(p(6,q))/G(p(0,q))
and multiplying by n. These should be then averaged with the turnout probabilities p, and
integrated over the density of (6, q).

Definition 9. Define a function Y (0,q) = (3 p.nG" 1 (p(0,q)))/ X p.G"*(p(0,q))).

Similarly to the Z (6, a(q)) function, Y (6, ¢) measures the extent of competition attributed
to a firm with coordinates (6, q). With fixed turnout it is simply equal to n.

Corollary 4. The total (ez-ante) expected profit and quality can be computed from the interim
ones, the Y (0, q) function and the joint density of (0, a(q)) using formulas below:

~

total expected quality: JJQ(G, Q)Y (0,9)f(0,a(q))dbda(q),

~

total expected rebate: JJR(Q, Q)Y (0,q9)f(0,a(q))d0da(q).
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4 Estimation

In this section, we treat our data as if there is no auction heterogeneity. We will show later
in Section 5 that this is a reasonable approach, as long as the reserve price is a credible signal
about the scale of the auction.

The theoretical analysis in Section 3.1 has shown that our model of scoring auctions shares
important features with the classic first-price auction. Despite the fact that bidder’s character-
istic is two-dimensional, the core equilibrium strategy () is one-dimensional, and, moreover,
it is a solution to optimality conditions:

o(0) € arg mgxw(s)(@ — 5). (21)

Since the probability of winning 7(s) is determined by the observed distribution of scores,
nonparametric estimators of Guerre et al. (2000) and Li et al. (2002), which now can be con-
sidered as standard, can be easily generalized to work in our environment. However, we will
make several important alterations that we explain below.

First, in order to capture the participation patterns in a symmetric model, we will estimate
the strategy as a best response to the residual distribution of scores, that is the distribution of
the maximum of scores among all but one bidder. Since this distribution can be thought of as
generated by a composite bidder (the strongest among n — 1 others), from the perspective of
each single firm, the decision problem is as if it was competing against that composite bidder
in a first-price auction. By that logic, it is absolutely justified to rely on the nonparametric
techniques in Guerre et al. (2000) and Li et al. (2002) for the nonparametric estimation of the
aforementioned distribution and the corresponding strategy.

Second, contrary to the classic first-price auction, it is not possible to use the estimated
strategy o(f) to recover the whole distribution of (6, ¢) from the observed distribution of (s, q),
because only those bids that fall below the reserve price are coherent with that strategy. The
bids that fall exactly at the reserve price therefore can not be used as part of the nonparametric
estimation and should be dropped.

We first estimate the joint distribution of (b, q) using a bivariate kernel density estimator
with boundary correction at b = r, advocated in Hickman and Hubbard (2015). We then
transform it into the distribution of (s,¢). Finally, by applying the inverse of the estimated
o(0) strategy, we recover the part of the joint distribution of (6, ¢) that does not map into the
reserve price in equilibrium. The rest of the distribution is extrapolated from the boundary,
namely, for every level of ¢, the density of a type that was forced to bid the reserve price will
be set equal to the density of the type that chose the reserve price willingly, see Figure 15.

With the estimated distribution of (6, q) at hand, we simulate the equilibria for the coun-
terfactual scoring rules and calculate the expected quality and expected rebate using formulas
derived in Section 3.4.

The rest of this section is split in three parts. In Section 4.1, we estimate the o strategy. In
Section 4.2, we recover the part of the distribution of (6, q) that is identified. And, ultimately,
in Section 4.3, we extrapolate the remaining part of the distribution, explain how to find the
counterfactual equilibrium and compute welfare.
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Figure 15: Estimation of the density of type, conditional on quality.

4.1 First-stage smoothing and strategy estimation

The first step in our estimation is to capture the equilibrium behavior imposed by the optimality
conditions (21). The probability of winning 7 (s) is measured by the distribution of the highest
among n — 1 firms score, which we refer to as a residual distribution of scores.

Definition 10. Denote the residual distribution of scores by H, and the corresponding
density by h.

Following the logic of Guerre et al. (2000), we estimate the perceived distribution H against
which each firm is playing in our symmetric model together with its density A.

Definition 11. Denote the auction index by j and the bidder index (in that auction) by i.
Definition 12. Denote the sample of scores by S = {s;;} and its size by M.

We apply a classic kernel density estimator to the residual scores, that is the maximal score
among all but one firm, for each firm 7 in each auction j:

o Z maxk# Sk — S>
- s )

SUES
with the kernel K and the bandwidth bs borrowed from Li et al. (2002):

35

K(u) = 3

—(1—u®’I(|u| < 1), h,=3.16-sd(s)-m~>,

where sd(s) is the standard deviation of the score in S. The choice of this bandwidth is based
on the popular statistical recipe called the ’Silverman rule’, which is calibrated for normal
distributions, see Hérdle (2012). The score distributions in our data look reasonably bell-
shaped, see Figure 16, so we have no reason to distrust this approach.

Similarly, # can be obtained. From the practical point of view, however, we find it more
natural to simply integrate the estimated density A numerically.
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Figure 16: The estimators of densities of the score and residual score distributions.

The estimator of Guerre et al. (2000) is based on the first order conditions, and so it does
not guarantee monotonicity of the strategy. However, a natural extremum estimator will have
this property by construction:

o(0) = inf arg max (51[(3) (0 — s)> .

This estimator is convenient because it is aligned with our theoretical knowledge, and be-
cause extremum estimators are among the most studied and well-understood in the literature,
see Newey and McFadden (1994) for an extensive overview.

4.2 Second-stage smoothing and boundary correction

The second step in our estimation is recovery of the joint distribution of (6, q).

If we were to blindly follow the recipe in Guerre et al. (2000), we would use the estimated
strategy ¢ to produce a sample of estimated pairs (él-j,qij), from which the density of the
distribution of (6, ¢q) could be obtained using a 2-dimensional kernel density estimator. The
reason why we cannot do this is that only the part of the distribution of (¢, ¢) which maps into

the interior bids, i.e. above the reserve price, can be correctly identified.

Definition 13. Denote the sample of interior bids by Dy and its size by My:
Dr = {(bij, qij)|bij < 1}

To estimate the part of the distribution of (¢, ¢) that is nonparametrically identified, we find
it easier to change the order or actions in the Guerre et al. (2000) algorithm. Namely, we will
first apply a 2-dimensional kernel smoothing to D; and only then use the estimated strategy &
to recover the relevant part of the distribution of (¢, q). We will also put an additional effort
to estimate the density at the boundary b = r, using reflection method advocated in Hickman
and Hubbard (2015).
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Definition 14. Denote the reflected sample of interior bids by Dig:

Drr() = {(

where

bij, qij)|bij = 1 —

7(bij, @ij)s (bij» 4i5) € D},

7(y,q) =y + d(q)y* + 0.55 - d*(q)y®,

_ log(p(h1, q)) —log(4(ho, )

d(q)

o(h,q) = —

=—+
M

ha

1
K
M;hyh, DZ

1 1

)

b — Qi —q
hood) = max{——. — L g, (b >K( )
¥(ho,q) {MI? M,hohqDZI °< ho I, J

and K 1s the endpoint kernel:
Ko(u) = (6 + 182 + 122%) - I{—1 < u < 0}.

The idea behind the reflection method is that when the data is censored at a certain thresh-
old, we can anticipate the unobserved part of the data assuming smoothness of the original

distribution.
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Figure 17: Estimator of g(b, ¢) before and after boundary correction for Leg-55.

Definition 15. Denote the densities of (b,q), and (6,a(q)) by g and jN’ respectively.

Below is a boundary corrected kernel density estimator of the joint distribution of (b, q):
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where the main bandwidths are taken in accordance with the 'Silverman rule’:
hy = 3.16-sd(q) - M;"®,  he = 3.16 - sd(0) - M;
and the bandwidths used in the construction of 7 are:
hi=he- M;"*° hg =148 hy.

The practical consequence of not doing boundary correction is that the density would un-
naturally decrease near the boundary (b = ), as seen on the left side of Figure 17. This
would directly violate our knowledge of the equilibrium behavior, which predicts that firms bid
essentially as if there is no reserve price and therefore the density should be smooth at the
boundary.

We do not perform boundary correction for the quality dimension, on purpose, to over-
smooth the spike in the neighborhood of ¢ = 100, see Figure 3. If the estimated distribution is
not smooth enough, there is a risk of non-existence of a continuous strategy.

Finally the relevant part of the joint distribution of (¢, ¢) can be obtained from the estimated
joint distribution of (b, ¢) using the standard density transformation formula:

k2O gty ¢ e)al)
density of (6,4) = {* o " o v otherw?éfa) ’

where = stands for the unknown value of the density in the non-identified part of the distribution,
and k stands for the constant to normalize the density. We will have to find a way to fill in the
missing part of the distribution, which will be discussed in the next section.

4.3 Extrapolation and counterfactuals.

The last thing that impedes our ability to simulate equilibria in a counterfactual scoring rule
is the part of the distribution of (6, q) that is not identified. This fundamental problem stems
from the censoring of the () strategy due to the presence of the reserve price.

It is important to understand at this point that multiple densities f(@, q) will be consistent
with the data. We will pick one such density due to its particular simplicity. Namely, we will
say that the the density at the type 0 < o~!(a(q)) is equal to the density at o~ *(a(q)), which
is the closest type for which it is identified. The equilibrium strategy serves as a boundary in
the (0, a(q)) coordinates to the types that choose the reserve price, therefore the level lines of
the distribution are horizontal to the left of the strategy, see Figure 18.

This gives us the following estimator for the whole range of 0 € [a(q), a(q) + B(q)r]:

2 o a'(0) a(f) —a o a
FOa = T () pre

where k£ normalizes the density.

Once the density is estimated, for a new counterfactual scoring rule, we can solve the
differential equation (8) using any suitable numerical integration method, such as, for example,
Runge-Kutta, to obtain the new o(f) strategy and the new distribution G(p(0,q)).

There are two ways how the numerical integration may fail, see Section 3.2. The first is
if the trajectory reaches the boundary of the anti-funnel, then a continuous strategy does not

~—

- g(min(r,r —
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Figure 18: Estimator of the density of (0, a(q)) after extrapolation for Leg-55.

exist, however, this never happens in our data. In the hypothetical situation where it happens,
increasing the smoothness of the estimated distributions should generally help. The second
is if the trajectory passes through the point where F] = 0. In this case, starting from the
level of quality ¢* at which it happened, all bidders choose the reserve price. As a result, the
interim rebate for all ¢ > ¢* is zero and the interim quality can be calculated according to the
distribution of probabilities of winning, based on the fact that highest quality wins.

Finally, the welfare properties of the scoring rule are captured by two functions: Q(,q) and
R(0,q), calculated using formulas in Corollary 3. The ex-ante versions of quality and rebate
are then computed using the estimated density of (6, a(q)), see Corollary 4.
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5 Heterogeneity

Typically in the literature on structural estimation, an auction model is complemented with a
separate model of heterogeneity, which instructs how to prepare the data before passing it to
the main estimation routine. A common approach is to represent the value (in our case, the
cost) of the bidder as either a sum or a product of two components: common and idiosyncratic.
The common component is then filtered out using the observed auction characteristics. Such
approach was taken, for example, in Haile et al. (2003) and Krasnokutskaya (2011).

In this paper, we take a different approach by relying on the reserve price as a control for
heterogeneity. Precisely, we will assume that the bidder’s cost is a product of an auction-specific
component and a bidder-specific component:

Cij = G5, T3 =175,

where v; represents the latent scale of the contract, and r; is the reserve price in that auction.
Crucially, the reserve price should follow the same scaling pattern.

Later in this section, we will show that, in this framework, the bids can be effectively
homogenized by just normalizing them by the reserve price. But before that, it is important
to understand why the reserve price is traditionally avoided as a control for the scale of the
auction, and why our situation is different.

5.1 Reserve price as a control

In the classic value auctions, for which the bulk of empirical methods were developed, the
reserve price is often set ad-hoc and is even sometimes entirely missing. That is because the
benefits of fine-tuning the reserve price are very limited. In fact, a theoretical argument in
Bulow and Roberts (1989) shows that it is more profitable to simply attract an additional
bidder rather then set an optimal reserve price. Another explanation might be that costs of
acquiring the statistical information needed for the optimal mechanism are prohibitively high.
All of this makes the reserve price an unreliable instrument for economic analysis.

In procurement the situation is slightly different. First of all, since there is no natural
upper bound to the bid (in value auctions bids are typically non-negative) the reserve price
is always present, to cut the contractee’s losses. Second, because the procurement contracts
are often very complex and not all cost-relevant information can be conveyed in the tender
documentation, the contractee might want to use the reserve price as a signaling device to help
the firms estimate their costs. The reserve price then can be thought of as a publicly observed
first bid. This signaling role is so important that it was, in fact, institutionalized by the Russian
authorities, see Section 2.1

5.2 Homogenization of bids

Assume that, in any given auction j, the score, on top of satisfying all the assumptions of the
model, has a particular shape:

s(b,q | r) =3(b/r,q),

which is true for the linear scoring formula that we have in our data. We can write down the
equilibrium conditions for a representative auction with reserve price r in the Lagrangean form
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as in (26). It is easy to see that the equilibrium conditions stay unchanged if the same linear
transformation v;(z) = v;x, where v; > 0, is applied to all of the three variables ¢, b, and r:

H(s(bq| 7)) -(b—c)+ Ar—>b) > rgglml?x, (26)
H (s((0),q [ 95(r))) - (3(0) = 5(€))) + AW (r) — ¢5(b)) — minmax. (27)

Indeed, the same bidding strategy b*(c, ¢) is the solution to both (26) and (27), which means
that the equilibrium bidding strategy in an auction that is scaled by ~;, is also scaled by
7v;. In other words, the same equilibrium strategy o(#) can explain the behavior in multiple
heterogeneous auctions as long as they are scalable to a single representative auction with a
fixed reserve price, which is our model of heterogeneity.

Since in our data all the bids are divided by the reserve price inside the score, this effectively
eliminates the impact of «; on the equilibrium behavior. Consequently, the model can be
estimated as if there is no auction-specific heterogeneity.

Corollary 5. Consider a model of heterogeneity, where for a firm i in auction j:

Sj<b7 Q> = g(b/rju Q>7 Cij = G5, Ty =T, Qij = i,

where (¢;,q;) are drawn as in a symmetric model. Then the equilibrium strategies o(6) and
c*(6,q) do not depend on the scale of the auction ;.

While theoretically appealing, our approach to homogenization of bids has to yet prove itself
successful in the data. To test it, we will randomly pick two bids (without return) from each
auction and plot the scatterplot of logarithms of the two bids, and a scatterplot of the two bids
normalized by the reserve price, see Figure 19 for the Leg-55, Sci-55 and Sec-80 datasets.

It can be seen with a naked eye that while the log-bids indeed require additional homoge-
nization, it is far less obvious for the normalized bids, as the reserve price absorbs a significant
portion of heterogeneity.

before normalization | after normalization

Dataset | Kendall | Pearson Kendall | Pearson
Edu-80 | 0.86 0.97 0.27 0.39
Edu-55 | 0.85 0.97 0.23 0.29
Sci-80 | 0.81 0.94 0.21 0.29
Sci-55 | 0.79 0.94 0.01 0.03
Leg-80 | 0.68 0.91 0.2 0.13
Leg-55 | 0.82 0.94 0.21 0.13
Tec-80 | 0.81 0.94 0.33 0.5
Tec-55 | 0.86 0.97 0.27 0.39
Sec-80 | 0.89 0.99 0.36 0.52
Sec-55 | 0.78 0.97 0.11 0.4

Table 7: Correlation in bids before and after normalization.

The quality of homogenization varies across the datasets, see Table 7, but since there is no
clear rule on how much correlation among bids is acceptable, we leave the data as it is.
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Figure 19: Normalization of bids.
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6 Empirical results

For each of the ten datasets, and both scoring designs, I have traced the corresponding frontiers
in the space of expected rebate and expected quality (both measured from 0 to 100), spanned
by the weight in the scoring formula. For each dataset, I produced a figure that contains these
frontiers, as well as the coordinates of the default linear scoring rule and its primary competitor:
the price-quality-ratio (s(b,q) = —b/q) scoring rule.

I will focus below on the results for the Leg-55 dataset, characterized by the diagram in
Figure 20. The diagram contains two arks, representing the welfare frontiers spanned by the
two families: linear and log-linear.

90

%’ 85

<

=]

o

T 80

3 Dataset: leg-55 ™

% —-—- log-linear N
75 | —— linear

® default linear
price-quality-ratio
70 B pure quality auction
€ pure price auction *

0 5 10 15 20 25 30 35
expected rebate

Figure 20: Welfare frontiers for the linear and log-linear families.

Several observations can be made.
(a) The arcs meet at the end points.
(b) The arcs are decreasing.

(c) The default linear rule is to the bottom-right from the price-over-quality rule.

(d) The linear design arc lies above the log-linear one.

All four observations are true for each of our datasets, see Figure 21. We will now explain the
relevance of these findings for the main economic question addressed in the current paper.
Observation (a) should not be a surprise since the pure price auction and the pure quality
auction can be considered as polar in the spectrum of scoring auctions produced by varying the
weight in the scoring formula. The figure then confirms our basic intuition that for the weight
approaching 0 or co the two scoring designs become indistinguishable in terms of welfare.
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Observation (b) is also anticipated, since the weight in the scoring formula is an intuitive
control for the trade-off between quality and rebate. The figure confirms that no two members
of the same scoring family can be ranked without the knowledge of designer’s preferences. In
other words, we can only hope to achieve an unambiguous improvement by switching between
the linear and log-linear designs.

Observation (c¢) demonstrates the failure of the traditional approach to mechanism choice,
when a default linear design is compared to a single member of the log-linear design. Indeed,
a switch to price-over-quality would increase expected quality by approximately 10 points, but
would decrease the expected rebate by approximately 30 points. Whether this is a beneficial
exchange depends completely on how the contractee values quality in monetary terms, which
can not be inferred from the auction data.

To quantify our findings, we compare the default linear scoring rule to the quality-equivalent
member of the log-linear family. This can be interpreted as switching to the price-over-quality
scoring rule, with a specially calibrated measure of quality to guarantee the same expected
quality. Our results are summarized in Table 8, and can also be inferred from the frontiers in
Figure 21.

dataset | switch to price-over-quality switch to log-
name linear with same
expected quality

Edu-80 | -26.42 % rebate and +11.99 % quality | -0.90 % rebate
Edu-55 | —2.79 % rebate and +0.28 % quality -2.10 % rebate
Sci-80 | —27.59 % rebate and + 13.59 % quality | -1.16 % rebate
Sci-55 | =5.90 % rebate and + 1.04 % quality | -3.12 % rebate
Leg-80 | —14.50 % rebate and +4.25 % quality | -2.21 % rebate
Leg-55 | —18.45 % rebate and +5.60% quality -3.94 % rebate
Tec-80 | —47.11 % rebate and +19.24 % quality | -1.31 % rebate
Tec-55 | —4.11 % rebate and +0.61 % quality -2.69 % rebate
Sec-80 | —9.72 % rebate and + 6.10 % quality | -0.41 % rebate
Sec-55 | =5.24 % rebate and +1.14 % quality -1.80 % rebate

Table 8: Quantitative results

Finally, observation (d) is the main qualitative result in our paper. It appears that, for every
member of the log-linear family, a member of the linear family dominates it in both welfare
dimensions. In other words, even without knowing the designer’s preferences for quality and
rebate, we can tell that his utility, as long as it is a nondecreasing function of expected quality
and rebate, is maximized at one of the linear scoring rules. Thus the linear design can be
considered as superior to the log-linear one.
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7 Conclusion

In this paper, I have investigated whether the linear scoring design is better than its main
competitor, price-quality ratio, in terms of welfare, and received a strong positive answer.

My methodological contribution to the literature on scoring auctions is a class of models
that are sufficiently flexible to feature both linear and log-linear scoring rules, yet they hold
enough structure to produce a very tractable solution. These models are built on two core
assumptions: exogenous quality and explicit reserve price. We have also developed a complete
machinery for the estimation of these models and simulation of counterfactuals.

My empirical contribution is a qualitative result about the superiority of the linear scoring
design. From Figure 20, as well as from every other simulation, it appears that every possible
log-linear scoring rule is dominated by some linear scoring rule. Moreover, this finding does not
depend on the exact knowledge of designer’s preferences over quality and rebate, which makes
it easy to be interpreted as policy advice.

Implicit in this assessment is the risk-neutrality of the designer’s preferences, and so it is
not surprising that the linear design succeeded over the log-linear. Had the preferences been
risk-averse, the log-linear scoring rule could be advantageous.

Several avenues for future research are suggested.

Endogenous quality. My analysis of the affine scoring rule can be partially extended to
the situation where quality is endogenous. This model can be thought of as part of a two-stage
game, where the quality is chosen at the first stage, and is considered exogenous afterwards.
However, to find an equilibrium in this game, more complicated tools, such as the ones developed
in Hanazano et al. (2016), will be required.

Discontinuous strategies. Though I focus on the most regular case of a continuous
strategy, situations may arise in practice where such equilibrium will not exist. In this case,
the non-linear equation (17) may be considered as a heuristically derived characterization of
the equilibrium. In fact, there is nothing in this equation, that particularly requires continuity.

Other scoring rules. While it might seem that the next logical step is to consider a scoring
rule of an arbitrary shape, as in Hanazano et al. (2016), the empirical application calls for an
even more general model where the scoring rule additionally depends on certain statistics of
other firm’s bids and qualities. This model would be useful for understanding the complicated
scoring rules such as the “average bid” used in Italy and the “minimal bid” used in Russia.
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8 Appendix A

Proof of Lemma 1 K R R
Assume that for some 6, g, it is true that ¢*(0, q) # max(c(#), a(q)), which means:

a(0) = 0*(0,q) < a(q) < o*(8,9).

This can only be the case if o*(6, ) is a local maximum of a continuous function 7(s)(0 —3).
Moreover, this function has to stay constant all the way between s; = 0%(0, ¢) and sy = (0, ),

otherwise the actual score O'*(é, q) would be discontinuous in ¢ somewhere in the range between
q and ¢, thus contradicting the continuity assumption. Staying constant, on the other hand,
contradicts the assumption that a lower score is chosen when indifferent.

Proof of Proposition 1

The first step in the proof is to establish several important properties of the o(6) strategy.
Clearly, o(#) = min, 0*(6, ¢) is continuous, because 0*(0, ¢) is continuous in both arguments. It
is also weakly increasing, by super-modularity of 7(s)(6 — s), see Milgrom and Shannon (1994).

To see that o(f) = 6, note first that the actual distribution of scores s = a(q) + 5(q)(r — b)
is constrained by a(q) = @ from below, as no firm is allowed to bid above the reserve price.
The best (unconstrained) response o (#) therefore can not go below 6 as that would induce an
upwards deviation for the lowest type. On the other hand, o(f) can not go above 6 as that
would guarantee a negative profit with positive probability for any type # > 6. Consequently,
by continuity, the () function at the lowest type € is confined to a single possible value 6.

To prove strict monotonicity, assume that the true range of the o*(6,q) function is [0, 3].
The 7(s) function is strictly increasing in this range by continuity of o*(6,q) and F(c,q).
Therefore, the o(f) strategy is strictly increasing for all types that map into (s,3s), see Milgrom
and Shannon (1994). In other words, it can only be flat at two segments: one adjacent to § and
one adjacent to 0. Typically, flat strategies are incompatible with symmetry in classic first-price
auctions, however, due to the 2-dimensional firm characteristic and the wedge between o and
co*, eliminating such behavior requires slightly more work.

First, assume that there is a segment of types adjacent to 8 that maps into ¢. That would
mean that, for all types in that segment such that 6 > @, the actual score ¢* is equal to
a(q) > a(q) = 0 after truncation. Consequently, before truncation, the perceived probability
of winning for all those types would be zero, which is worse than if they chose any other score
above  but below their own type 6. Second, assume that there is a segment adjacent to 0, that
maps into 5. That would mean that 5 is the maximum value of both ¢ and ¢*. Consequently,
for a positive measure of (6, q) the actual score would be 3, and, therefore there will exist at
least one (0,q) that would deviate. The o(6) strategy is therefore strictly monotone in the
whole range of types.

Once we have invertibility of o, we can construct the pseudo-type p(,q) = o~ (c*(0,q))
and proceed with the direct mechanism approach in Section 3.3. Using the residual pseudo-type
distribution G we can characterize o(f) as a solution to the optimality conditions below:

o(0) € argmax(0 — a(p)) G (p). (28)
The necessary first order conditions can be written as a system of equations:
0G' +0'G=0G, ZGG=GG, G =F +F0,
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that can be uniquely solved, assuming that ﬁ'{ > 0:

o = (0_0->ﬁll G = ZGﬁll g/_ gﬁll
ZG— (0 —0)F} ZG— (0 —0)F} ZG— (0 —0)F}

~

Recalling that G(0) = F(6,0(0)), we obtain our differential equation:

o = (0_0->ﬁll )
ZF — (0 —o)F}

The second order conditions are satisfied as o(6) strategy is a conditional expectation of the
highest pseudo-type below 6, see Section 3.3 for a discussion. If the o(f) trajectory passes
through the point where F} = 0, it will switch to a different law of motion: (6 — o')F} = ZF,
however, under Assumption 5 this never happens, see Section 3.2 for a discussion.

It remains to show that coupled with the initial condition o(f) = 6, the differential equation

has a unique solution in the range [6, 6], for which we will employ the theory of fences and
funnels from Hubbard and West (1997).

An anti-funnel consists of two functions of time (in our case ), called upper fence and lower
fence. Both functions should be continuously differentiable and such that for each point on the
fence, the slope of the vector field passing through is lower than the slope of the upper fence
and greater than the slope of the lower fence at that point. The obvious choice of the upper
fence is 0 = #, because the vector field has zero slope there. For the lower fence a natural
candidate is the o = 0(0) curve:

5(0) = {o€[0,6]: Z(0,0)F(0,0) — (0 — 0)F}(8,0) = 0},

which is well defined under Assumption 5 and the vector field has an infinite slope there.

The coordinates (6, 0) are inconvenient for the formal proof of uniqueness and existence,
because the right handside of the differential equation is formally not defined at the lower fence.
But this is only a notational problem. Assume for simplicity that § = 0 and make a change of
coordinates:

t=0+0)2 x=(0c—-20)/2,

which corresponds to a 45 degrees clockwise rotation of the vector field around the (0, 0) point.
The new differential equation =’ = f(¢,z) is now well-defined at the boundary of the new
anti-funnel. Moreover, since all the functions «, 3, F' are assumed to be twice continuously
differentiable, so does F' and Z(0,0). Therefore, f(t,x) is continuously differentiable, for all
points inside and on the boundary of the anti-funnel. And since the new anti-funnel is a
compact, f(t,x) is uniformly bounded together with its first derivatives.

To establish existence we apply Theorem 4.7.1 (Fence Theorem) and Theorem 1.4.4 (Anti-
Funnel Theorem: Existence) which only require that f(¢, z) satisfy continuity in ¢ and Lipshitz
condition in x inside the anti-funnel, which follows from continuous differentiability of f.

To establish uniqueness we apply Theorem 4.7.5 (Second Uniqueness Criterion For Anti-
Funnels) which additionally requires that the anti-funnel is narrowing at the initial point (which
is true in our case) and that inside the anti-funnel the following property holds:

O ()it > o,

a
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which follows from the fact that a% f(t,z) is uniformly bounded there.

Proof of Proposition 2
We start from the direct mechanism derived in the proof of Proposition 1:

7(6) < axg max(8 — o(0)) G (p). (20)

To apply the envelope argument, we use Theorem 2 from Milgrom and Segal (2002). The
premises of this theorem are satisfied since the profit function in (29) is continuously differen-
tiable in #, and its partial derivative with respect to 6 is uniformly bounded. Since o is strictly
monotone (see proof of Proposition 1), for any 6 there exists a ¢ such that p(6,q) = 60, and
therefore the envelope conditions can be written as:

0
(6= 0(6)6(0) - (0~ 00)6(®) - | G(:)a= (30)
Finally, since o(6) = @ (see proof of Proposition 1), we obtain our formula:
1 ?
of) =6— %L G(z)dz. (31)
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