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Abstract

We study buyer-optimal procurement mechanisms when quality is contractible.
When some costs are borne by every participant of a procurement auction regard-
less of winning, the classic analysis should be amended. We show that an optimal
symmetric mechanism is a scoring auction with a score function that may be either
flatter or steeper than classically. This depends on the relative degrees of informa-
tion asymmetry over the all-pay and winner-pay costs.

However, the symmetry of the optimal mechanism is not granted due to the
presence of all-pay costs. When ex-post efficiency is less important than the du-
plication of costs, favoritism becomes optimal. We show that, depending on the
degree of convexity of costs, the solution takes one of two novel formats with a par-
tially asymmetric treatment of firms, which we call a score floor and a score ceiling
auction. Interestingly, these auctions feature side payments from or to the buyer,
which has nothing to do with corruption.
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1 Introduction

In recent decades, procurement agencies across the world have come under increasing
pressure to improve performance and deliver projects faster. The reason is that the
traditional approach, when the contract is awarded to the lowest price bidder, fails to
capture the trade-off between costs and quality of procurement. At the same time, quality
may represent a large portion of the buyer’s utility. As a result, numerous alternative
auction designs have emerged, see Molenaar et al. (2007) for an overview.

One such design is the scoring auction, where the contract is awarded to the firm with
the best combination of price and quality. It was shown to be superior to the traditional
approach theoretically (see Che (1993); Asker and Cantillon (2008, 2010)) when quality
is contractible, and the associated costs are winner-pay. A special case when quality is
represented by the speed of delivery is known as “A+B auctions” in road construction
(see Lewis and Bajari (2011)). On the other hand, when quality is not contractible, the
average bid auction (see Albano et al. (2006); Decarolis (2014), Decarolis (2018)) and the
low-ball lottery auction (see Lopomo et al. (2022)) have been proposed.

Our goal is to study optimal mechanisms when a firm’s quality is endogenous and
contractible, but some of the associated costs are all-pay. That is, some quality-dependent
costs are paid not by the winner only, but by all participants. The firm’s experience and
past performance, among others, have this property. This makes quality special in the
sense that the firm has it chosen before the main (bidding) stage of the mechanism
and fully commits to it. Given this, it is natural to condition allocation and payments
directly on qualities (along with the standard “messages”) in any mechanism. We put
extra effort into defining such mechanisms formally Section 2. Also, we assume that
there is no communication among firms at the quality-choice stage. This implies that
in any equilibrium, the quality of every firm can depend on its efficiency type only, but
not on the efficiency types of competitors. This is consistent with an empirically relevant
setting in which a firm competes for several similar contracts but against different sets of
rivals but has the same quality in all of those competitions.

We begin with the analysis of optimal symmetric mechanisms in Section 3. We show
that, under mild conditions, an optimal symmetric mechanism is a scoring auction with a
quasi-linear scoring rule, see Propositions 1 and 2. In the optimal mechanism, quality is
distorted downwards to account for the informational rents, see Proposition 3, which was
also the case in the standard model with winner-pay costs only (Che, 1993). However, it
is not independent of the number of bidders, as in Che (1993), but is decreasing instead,
see Proposition 4. The intuition is that, as a firm’s market share shrinks, it can not afford
to put the same level of investment upfront. The optimal scoring rule also depends on the
number of bidders — which is also nonstandard — but the comparative statics is more
complicated and depends on the relative elasticities of winner-pay and all-pay costs, see
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Proposition 5.
In section Section 4, we proceed with two arguments showing that even with ex-ante

symmetric firms, symmetric mechanisms can be sub-optimal. One such argument is sim-
ple: if there is little or no private information, sole-sourcing (i.e., procurement from a
single supplier) is optimal, see Proposition 6. The second argument is subtler: regardless
of the amount of private information, the optimal symmetric mechanism may be domi-
nated by another mechanism where some of the worst types are treated asymmetrically.
This happens when the elasticity of the investment costs with respect to quality is high
enough, see Proposition 7.

The most intriguing (to our minds) part of the paper is the analysis of optimal mech-
anisms without the restriction to symmetry in Section 5. For two firms, we identify four
different mechanisms that could be optimal.1 The first two are the traditional scoring
auction and sole-sourcing. The former maximizes ex-post efficiency, while the latter min-
imizes all-pay costs. The other two mechanisms, born from the tension between these
forces, are novel and present a surprising combination of symmetric and asymmetric de-
sign, integrating aspects of both scoring and favoritism. The key factors determining the
shape of the optimal mechanism are the informational asymmetry and the curvature of
the marginal all-pay costs, see Proposition 8.

Our first novel mechanism can be thought of as an optimal symmetric allocation with
the type of the favored firm censored from above (right); thus, we dub it right-censored.
It can be implemented by a scoring auction where both firms face a score floor (a reserve
score) S, but the favored bidder gets a monetary bonus for exceeding S, see Proposition 9.
The score floor and the bonus work in concert to ensure that the favored bidder’s worst
(rightmost) types participate in the mechanism, while the unfavored bidder’s worst types
do not.

Our second novel mechanism can be thought of as an optimal symmetric allocation
with the type of the unfavored firm censored from below (left); thus, we dub it left-
censored. It can be implemented by another modification of a scoring auction. Instead
of a score floor, one should impose a score ceiling S̄ so that the bids with a score higher
than S̄ do not count. As in the case of score floor, one should also supplement these rules
with a side payment but from the favored bidder rather than to her, see Proposition 10
and, thus, we call this transfer a kickback.

The proof of the auction-style implementation serves two purposes. First, it gives
hope that these mechanisms could be used in practice. Second, it shows that all the
incentive constraints are satisfied; see Theorem 1, Theorem 2, and Theorem 3. This is far
from obvious since firms can deviate in both quality and price and unlike in Che (1993)
where there are no all-pay costs, these two decisions cannot be decoupled. We explain

1For a narrow class of environments, these four mechanisms comprise a complete classification of
optimal mechanisms, see Figure 5 in Section 5.3.
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the nuances of these double deviations in Sections 3.2 and 5.2.
We provide a number of additional results in Section 6. What determines the optimal

degree of symmetry? We show that when the importance of private information grows,
the optimal mechanism becomes more symmetric, see Proposition 11. The intuition
is that selecting the ex-post efficient firm becomes more important than avoiding the
duplication of investment costs. This also leads to a somewhat surprising conclusion that
the efficient mechanism could be less symmetric than the optimal one, see Proposition 12,
as informational rents may amplify the role of private information.

Finally, we provide some insight into the optimality with more than two firms. In
Proposition 13, we focus on a natural family of “restricted entry” mechanisms in which one
allows only k bidders to enter and then lets them play the optimal symmetric mechanism.
One may think that choosing some intermediate k (say, n/2) may be a good option since it
balances the desire to preserve ex-post efficiency and avoid the duplication of investment
costs. Under a mild non-parametric assumption, we show that, in fact, the optimal k in
this case is always either 1 or n. Thus, a partial entry restriction is never optimal; if a
buyer wishes to create asymmetry by pure entry restriction, she should restrict entry all
the way to monopoly.

1.1 Related literature

Our paper contributes to the vast literature on scoring auctions, see Che (1993); Branco
(1997); Asker and Cantillon (2008, 2010); Nishimura (2015) for important theoretical
contributions, and Adani (2018); Lewis and Bajari (2011); Decarolis et al. (2016) for
empirical. In these auctions, quality of works is used as part of the selection criterion
but, with the exception of Decarolis et al. (2016), the associated costs are winner-pay. 2

Notable contributions were made in Manelli and Vincent (1995); Lopomo et al. (2022)
where quality is exogenous and not contractible, and in (Tan, 1992; Piccione and Tan,
1996; Arozamena and Cantillon, 2004) where quality is chosen before learning one’s type.

Another important strand of the literature is where investment or entry decisions are
made after learning one’s type, see Celik et al. (2009); Zhang (2017); Gershkov et al.
(2021). Contrary to our paper, in their settings (i) an agent’s action is not contractible
which precludes the use of scores which are a focus of the present paper, and (ii) an
agent’s action does not directly benefit the principal.

Assumptions (i) and (ii) can be motivated, for instance, by the Spectrum auctions,
as well as some procurement auctions where the buyer is not concerned with the quality
of works and so the firm invests only into costs reduction. But, in many applications,

2Decarolis et al. (2016) document long-lasting blackouts associated with traditional price-only pro-
curement auctions for electricity works in Italy. As a result, a scoring auction was used with past
performance playing the role of quality. Since past performance was measured in past contracts, all
associated costs are effectively all-pay from the current auction’s viewpoint.
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especially in public procurement, quality is important for the buyer. In these settings,
quality is traditionally used in the selection criterion, either as part of the scoring formula
or as minimal quality requirements, and thus is observable.3

A salient manifestation of the difference between our setting and that of Celik et al.
(2009); Zhang (2017); Gershkov et al. (2021) is that in the mentioned papers, there
is essentially only one mechanism in which the most efficient agent always gets the
good/contract. Once this allocation rule is fixed, the agents’ actions (quality) are hidden
and thus uniquely defined. In contrast, in our setting, multiple action profiles are com-
patible with the same allocation rule, and the designer can choose (and enforce) the best
ones. Despite these differences, we were able to leverage some of their technical results.4

Finally, there exists a sizeable literature on corruption in scoring auctions, e.g. Ce-
lentani and Ganuza (2002), Burguet and Che (2004), Burguet (2017), Huang and Xia
(2019), Huang (2019). However, the favoritism in our paper is not due to corruption, but
by design.

1.2 Organization of the paper

In Section 2 we set the environment. In Section 3 we derive the optimal symmetric
mechanism and study its comparative statics. In Section 4 we show the suboptimality of
symmetric mechanisms and derive the optimal asymmetric mechanism in Section 5. In
Section 6, we consider various factors that determine asymmetry of the optimal mecha-
nism, as well as the ex-ante exclusion of firms, and we conclude in Section 7.

The technical proofs for Sections 3 to 6 are contained in Appendices A to D.

2 Setup

Consider a single buyer (principal) who wishes to procure a contract for which there are
n potential firms (agents). The quality of the work to be procured is endogenous. Upon
privately learning her cost parameter (type) θi ∈ [0, 1], the firm chooses quality qi ≥ 0,
which is perfectly observed by the buyer and is contractible.5 Following Che (1993), we
assume that quality is one-dimensional. The contract can be allocated among the agents
in shares zi ≥ 0. Also following Che (1993), we posit that the good must be procured in
any case, that is,

∑n
i=1 zi = 1.6

3There is a recent dynamic of moving away from the price-only auctions towards the most economically
advantageous tenders, i.e., scoring auctions and alike, see European Union Directive 2014/24/EU.

4The symmetric results in our paper hold in greater generality than the asymmetric ones, which
require a separable environment. This assumption can not be relaxed without losing the link with Zhang
(2017). We discuss the fine details of this link in Appendix E.

5θ = 1 is the worst, most costly type.
6The buyer always procures the good, if her outside option is sufficiently low.
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Quality is costly to produce, and each supplier will incur per-unit production costs
CP (qi, θi) if he is selected for the contract. The novel feature is that in addition to the
production (winner-pay) costs, each supplier i also incurs investment costs CI(qi, θi),
which are sunk before the auction. Thus, the investment costs are all-pay costs that are
borne regardless of winning the contract. Types θi are independently distributed with
cdf F (θi) and strictly positive density f(θi).

Note that the cost functions are not firm-specific, so all firms are ex-ante symmetric.
Due to the all-pay nature of CI(qi, θi), a firm’s (agent’s) payoff is given by

Π(zi, ti, qi, θi) = ti − CP (qi, θi)zi − CI(qi, θi),

where ti is the monetary transfer to firm i.
The buyer’s (principal’s) payoff is given by

U(z, t,q) =
n∑
i=1

(V (qi)zi − ti)

for some function V (qi) representing her preference towards the quality of works.7

We impose the following standard assumptions on the primitives of the model.

Standing Assumption 1.

1. CP
q > 0, CP

θ > 0, CI
q > 0, CI

θ > 0,

2. CP
qθ > 0, CI

qθ > 0,

3. CI(0, θ) = 0, CI
q (0, θ) = 0,

4. V ′(q) ≥ 0, V ′′(q) ≤ 0.

Because quality is observable and contractible, we ought to include qi directly as
determinants of allocation and transfers. Thus, our definition of a mechanism is somewhat
non-standard. AmechanismM is a collection of message setsMi and functions zi(m,q),
ti(m,q), for all i = 1, . . . , n.

We consider the following timing of the game:
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7We will use boldface to denote a vector indexed by i = 1, . . . , n, throughout the paper.
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Importantly, given this timing, quality qi may depend only on own type θi while
allocation zi and transfers ti may depend on the types of all firms through the messages
sent. That is, we assume that the decisions about investment in quality are independent —
a bidder cannot condition her quality on her competitor’s types. This is a common
assumption in the literature on auctions with endogenous valuations (Gershkov et al.
(2021), Celik et al. (2009)).

We posit that the firms will play a (principal-suggested) Bayes-Nash equilibrium
(BNE) of any given mechanism. We will use the following shorthands:

σi(θi) := (mi(θi), qi(θi)), σ−i(θ−i) := (m−i(θ−i), q−i(θ−i)), σ(θ) := (σi(θi), σ−i(θ−i)).

The buyer’s problem can be written as

(P) max
M,σ

EθU(z(σ(θ)), t(σ(θ)), q1(θ1), . . . , qn(θn))

s.t. Eθ−iΠi(zi(σ(θ)), ti(σ(θ)), qi(θi), θi) ≥

Eθ−iΠi(zi(m
′
i, q
′′
i , σ−i(θ−i)), ti(m

′
i, q
′′
i , σ−i(θ−i)), q

′′
i , θi), (1)

Eθ−iΠi(zi(σ(θ)), ti(σ(θ)), qi(θi), θi) ≥ 0, (2)

zi(σ(θ)) ≥ 0,
n∑
i=1

zi(σ(θ)) = 1 (3)

for all i, (m′i, q
′′
i ) ∈ Mi × R+, and θi,θ in the support. We stress that a firm can make a

double deviation (m′i, q
′′
i ), which is an important part of our analysis below.

2.1 Problem relaxations

We shall proceed by making several relaxations of the incentive constraints.
First, we focus on the case where by sending a message m′i, a firm mimics a type θ′

while in choosing its quality q′′i , the firm mimics a potentially different type θ′′. Second,
we will discard all the IC constraints (1) for θ′i 6= θ′′i . That is, we will focus only on
deviations whereby the firm mimics the same type in its message and quality decisions.
Finally, by using the Envelope Theorem, we will discard all “distant” IC constraints,
leaving in place only the local ones.

Define the equilibrium outcome functions induced byM and σ as

z(θ) := z(σ(θ)), t(θ) := t(σ(θ)).

Note that these functions are different from a direct, truthful mechanism, which entails a
pair of mappings z(θ, q), t(θ, q).8 After making the first two relaxations (setting θ′i = θ′′i ),

8The reason is that in such a direct mechanism for every (potentially untruthful) report θ′i the buyer
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the buyer’s problem becomes

(P1) max
qi(θi),z(θ),t(θ)

EU(z(θ), t(θ), q1(θ1), . . . , qn(θn))

s.t. Eθ−iΠi(zi(θ), ti(θ), qi(θi), θi) ≥

Eθ−iΠi(zi(θ
′
i, θ−i), ti(θ

′
i, θ−i), qi(θ

′
i), θi),

Eθ−iΠi(zi(θ), ti(θ), qi(θi), θi) ≥ 0,

zi(θ) ≥ 0,
n∑
i=1

zi(θ) = 1, qi(θi) ≥ 0

for all i and θ′i,θ in the support. Thus, we have replaced optimization over (indirect)
mechanisms and equilibria with optimization over the outcome functions.

We employ the standard envelope argument that uses local IC constraints to express
interim expected transfers ti as a function of allocation zi and quality qi, with the firm’s
profit at the worst-off type normalized to zero. We then use standard integration by parts
to arrive at the following problem:

(P2) max
qi(θi),z(θ)

E
n∑
i=1

(
V (qi)zi − C̃P (qi, θi)zi − C̃I(qi, θi)

)
(4)

s.t. zi(θ) ≥ 0,
n∑
i=1

zi(θ) = 1, qi(θi) ≥ 0 (5)

where C̃P (qi, θi) are the i’th firm’s virtual production costs defined as

C̃P (q, θ) := CP (q, θ) + CP
θ (q, θ)

F (θ)

f(θ)

and C̃I(qi, θi) are the i’th firm’s virtual investment costs defined as

C̃I(q, θ) := CI(q, θ) + CI
θ (q, θ)

F (θ)

f(θ)
.

Our aim is to solve the relaxed problem (P2), getting a certain optimal outcome func-
tions z(θ) and qi(θi) and an upper bound U on the buyer’s utility from any mechanism.
After that we will show that, under fairly standard regularity conditions, U will be at-
tained in an equilibrium of an actual mechanism implementing z(θ), t(θ) and qi(θi), thus
proving that this solution is indeed optimal in the full problem (P).

The appropriate regularity conditions are formulated below.

Standing Assumption 2.

would impose the quality qi(θ′i) on the firm i. However, he can not impose qualities, as they are chosen
beforehand; the designer can only impose outcomes z, t conditional on qualities observed, but not the
qualities themselves
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1. C̃P
θ > 0, C̃P

qq > 0, C̃P
qθ ≥ 0, C̃I

θ > 0, C̃I
qq > 0, C̃I

qθ ≥ 0.

2. V ′(q) > C̃P
q (q, θ) for q = 0, and V ′(q) < C̃P

q (q, θ) + C̃I
q (q, θ) for q =∞

The latter Inada-style conditions are only needed for the interiority of the solutions.
By default, we will assume Assumptions 1 and 2 throughout the paper.

We will consider separately two cases: (i) the buyer restricts himself to using only
symmetric mechanisms, leading to an upper bound of U sym; (ii) the buyer can possibly
employ asymmetric mechanisms, leading to an upper bound of Uasy. One of the key
messages of this paper is that frequently U sym < Uasy even though the firms are ex-ante
symmetric.

3 Optimal symmetric mechanisms

In this section, we characterize optimal symmetric9 mechanisms, similar in spirit to the
optimal mechanism in Che (1993), but in the presence of investment (all-pay) costs. This
is done in two steps: first, we find the optimal symmetric outcome functions, second, we
show that a symmetric mechanism exists that implements them. See Appendix A for the
technical lemmas and proofs.

3.1 Optimal outcomes

Define the virtual production surplus as

x(q, θ) := V (q)− C̃P (q, θ),

then the buyer’s payoff can be written as

U = E
n∑
i=1

(
x(qi, θi)zi(θi)− C̃I(qi, θi)

)
.

With no investment costs, as in Che (1993), the optimal quality function would be
the one maximizing x(q, θ) pointwise, whether or not the symmetry constraint is applied.
The situation becomes more complicated when investment costs are involved.

Firstly, for any quality functions qi(θi), allocating the contract to the firm with the
highest x(q, θ) is optimal, thus

∑n
i=1 x(qi, θi)zi(θi) = maxi x(qi, θi). Secondly, restricting

ourselves to symmetric outcomes, we can argue that, under appropriate regularity con-
ditions (Assumption 2, part 1), it is the firm with the lowest (efficient) type, which we

9Symmetry here means that the quality functions and allocation functions are invariant under the
permutations of indices.
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denote as θ(1). In other words, the optimal symmetric allocation functions which
we denote as z∗i,sym(θ) are equal to I[θi = θ(1)].

The last step is not obvious, since, generally, maxi x(q(θi), θi) ≥ x(q(mini θi),mini θi),
unless x(q(θ), θ) is shown to be monotone in θ at the symmetry-constrained optimum.
To argue this, we can replace any non-monotone x(q(θ), θ) with its equimeasurable non-
increasing rearrangement, yielding an increase in the payoff, see Lemma 2.10

Consequently, we can reduce attention to the following payoff function

Usym := E
(
x(q(θ(1)), θ(1))− nC̃I(q(θi), θi)

)
.

Define the symmetric probability of winning given type θ as

PWsym(θ) := (1− F (θ))n−1,

then the buyer’s payoff is equal to

Usym = n

∫ [
x(q(θ), θ) · PWsym(θ)− C̃I(q(θ), θ)

]
f(θ)dθ, (6)

due to the pdf of θ(1) being equal to n(1− F (θ))n−1f(θ).
The optimal symmetric quality function solving (P2), which we denote as q∗sym(θ),

can then be easily derived via first order conditions since it maximizes (6) pointwise. It
remains to check that it is decreasing, which follows from Assumption 2, part 1.

We summarise the derivation in the proposition below.

Proposition 1. The quality function q∗sym(θi) solving the relaxed problem (P2) under the
symmetry constraint is determined by finding q that solves the equation below

V ′(q) = C̃P
q (q, θ)) + C̃I

q (q, θ)/PWsym(θ). (7)

Moreover, q∗sym(θi) is decreasing, and z∗i,sym(θ) = I[θi = θ(1)].

Notice that the trade-off between the virtual production surplus and investment costs
is steeper for the firms with higher θi because they win less frequently. In particular,
the highest (least efficient) type θi = 1 in our model produces the worst possible quality
q∗sym(1) = 0, due to the monotonicity of the investment costs in qi, see Assumption 1.

Substituting q∗sym(θi) into Usym yields an upper bound U sym on the buyer’s utility in
the full problem (P). It remains to show that it can also be attained.

10definition of rearrangement
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3.2 Implementation

In this section, we will show that the optimal quality function q∗sym(θi) and the associated
allocation functions z∗i,sym(θ) are implemented in the equilibrium of a first-score auction,
with a carefully picked scoring rule11. In fact, we will show that this is true for all
decreasing quality functions q(θ) and the same allocation functions. This will also imply
that none of the constraints in problem (P) are violated, and thus U sym is indeed attained.

As is usual in the quasi-linear environments, we shall seek a quasi-linear scoring
rule S(q, p) = s(q) − p, where p is the price-bid. It is not hard to show that s(q) must,
due to every firm’s first-order condition, satisfy

s′(q) = CP
q (q, θ(q)) + CI

q (q, θ(q))/PWsym(θ(q)), (8)

where θ(q) is the inverse of the chosen quality function q(θ).
This leads to the following equilibrium score and price-bid strategies

S(θ) = s(q(θ))− p(θ), (9)

p(θ) = CP (q(θ), θ) +
CI(q(θ), θ) + IR(θ, 1)

PWsym(θ)
. (10)

where IR(θ, θ′) are the informational rents accumulated between types θ and θ′

IR(θ, θ′) :=

∫ θ′

θ

[CP
θ (q(u), u)PWsym(u) + CI

θ (q(u), u)]du. (11)

However, it is not clear that global IC constraints will hold as we must exclude all
joint quality-price deviations.

We illustrate the problem with a stylized plot of the agent’s response curves q̂(S|θ) and
Ŝ(q|θ), for a fixed type θ and the equilibrium score distribution of opponents. When there
were no investment costs, as in Che (1993), quality was chosen independently from the
score. Thus, it was clear that Ŝ(q|θ) was crossing q̂(S|θ) only once and also “from below”,
see Figure 1 (left), which characterizes the intersection point as a global maximum. To the
contrary, in the presence of investment costs, q̂(S|θ) is not constant, and so the number
of intersections is not obvious, see Figure 1 (right).

But even assuming a unique intersection and the monotonicity of both response curves,
we still have to argue that Ŝ(q|θ) crosses q̂(S|θ) “from below”. To make things worse,
by deviating from the conjectured optimum in the score dimension only, it is impossible
to distinguish the type of crossing. Thus, considering (double) deviations in score and

11Formally, a first-score auction is a mechanism such that, for every firm i, the message set is
Mi = R+ with message being the price offered. Let W (m, q) be set of auction winners given by
W (m, q) = {i|s(qi) −mi = maxj(s(qj) −mj)}. Firm’s i allocation is then given by zi(m, q) = I(i ∈
W (m, q))/|W (m, q)|. Firm’s i transfer is ti(m, q) = mizi(m, q).
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Figure 1: Stylized plot of the optimal response curves q̂(S|θ) (solid line) and Ŝ(q|θ)
(dashed line) without investment costs (left) and with investment costs (right).

quality are absolutely necessary for the proof of optimality.
Despite this complication, no condition beyond Assumption 1 is needed to guarantee

that the implementation works. The trick is to decompose the deviation towards an
arbitrary point (q, S) into a (sideways) deviation along the q = q̂(S|θ) curve, and a
(vertical) deviation in quality, see Figure 1. It remains to verify that the q = q̂(S|θ)
curve passes through the conjectured score-quality pair and that the agent would choose
it among all other points on that curve. In other words, we need to confirm that q(θ) is
optimal along the S = S(θ) line and that S(θ) is optimal along the q = q̂(S|θ) curve, for
each θ. These two conditions amount to S(θ), q(θ) being a proper best response.12

With the double deviations taken care of, we can establish the existence of an equi-
librium in a first-score auction that implements a desired outcome.

Proposition 2. For any decreasing quality function q(θ) with inverse θ(q), the first-score
auction with quasi-linear score S(q, p) = s(q) − p, where S(q) satisfies (8), has a BNE
in which the strategy of every firm is q(θ) and p(θ), S(θ) defined by formulas (9), (10),
the most efficient firm gets the contract, and the expected profit of every firm type is
non-negative.

Finally, by applying Proposition 2 to the optimal quality function q∗sym(θ) derived in
Proposition 1, we can claim or first main result — a full characterization of the optimal
symmetric mechanism.

12We stress that q̂(S|θ) different from the curve (q(θ), S(θ)), which is not depicted on Figure 1. Thus,
ruling out deviations associated with lying about ones type, even if we chose to do so, would not make
the analysis easier.
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Theorem 1. The first-score auction with the score S(q, p) = S∗(q)− p, where S∗(q) sat-
isfies (8) with θ(q) being the inverse of q∗sym(θ) solves the problem (P) with the restriction
to symmetric mechanisms, i.e., Ūsym is attained, and thus the first-score auction is an
optimal symmetric mechanism.

It is important to note that since the agents can signal their one-dimensional type
through either quality or price, there are alternative implementations of these outcomes.
In particular, it is possible to write a contract where agents compete only in the quality
dimension, effectively choosing from a menu of price-quality pairs. The sets of messages
Mi will be empty in such a mechanism. However, we believe that the specific implemen-
tation via a scoring auction would be of greater value for practitioners.13

3.3 Comparative statics

Having characterized the optimal symmetric quality function to implement and the opti-
mal score function, we are now able to investigate how the solution in our model differs
from that of Che (1993), without investment costs.

To introduce the size of the investment costs into the model, we simply scale CI(q, θ)

by a parameter β ≥ 0. Note that β = 0 corresponds to the model of Che (1993). As
usual, we will denote the number of firms as n.

3.3.1 Downward quality distortion

One of the main findings in Che (1993) was that because naive scoring rules fail to take
the informational rents into account, it becomes optimal to systematically discriminate
against quality by lowering the slope of the scoring rule. As a result, quality is distorted
downwards, but the information rents of the relatively efficient firms are also reduced.
The same intuition applies here.

Subtracting (7) from (8) and using the definitions of the virtual costs, one gets

s∗′(q)− V ′(q) = −CP
qθ(q, θ)

F (θ)

f(θ)
−

CI
qθ(q, θ)

PWsym(θ)

F (θ)

f(θ)
6 0, (12)

where the inequality follows from Assumption 2.

Proposition 3. For the optimal scoring rule, s∗′(q) 6 V ′(q).

Interestingly, it also follows from (12) that when the production costs depend only on
type, and the investment costs depend only on quality, the truthful score with S(q, p) =

13In many countries, buyers are legally bound to use the scoring auction as a procurement mechanism
in environments where quality matters. One could also argue that letting the agents compete in both
price and quality generates more information relative to the price-quality menu system and thus may
improve price discovery.
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V (q)−p is actually optimal; no score distortion is needed. This observation will be helpful
in Section 5 where we will focus on optimal asymmetric mechanisms in such environments.

3.3.2 Number of firms and the size of investment costs

Another important takeaway from Che (1993) was that neither the quality of the firm nor
the scoring rule in the optimal mechanism depended on the number of firms n. That is
because without the investment costs, it was a dominant strategy for each firm to choose
quality to maximize it’s own strength (relative to the scoring rule) in the upcoming
scoring auction. Furthermore, since the optimal scoring rule was meant to induce the
same quality function for each firm, it also did not depend on n. It turns out that neither
is generally true in the presence of investment costs.

Recall that q∗sym(θ) maximizes

x(q, θ)− β

PWsym(θ)
C̃I(q, θ) (13)

pointwise. For any given type θi, a higher number of firms lowers the perceived prob-
ability of winning in the symmetric mechanism. As a result, the trade-off between the
virtual production surplus and the virtual investment costs, captured by the formula (13),
becomes steeper, thus inducing lower quality. The size of investment costs β acts in a
similar way. 14

Proposition 4. The optimal symmetric quality function q∗(θ) is decreasing in n, β.

The dependence of the scoring rule on n, β is less obvious. Recall that the optimal
scoring auction is defined by the following first-order condition

s′(q) = CP
q (q, θ̂) +

β

PWsym(θ̂)
CI
q (q, θ̂),

where θ̂ = θ(q) is the inverse of q∗sym(θ). On the one hand, higher n, β increase the
right-hand side of this equation for any given θ̂. On the other hand, q∗sym(θ) is decreasing
in n, β, θ and thus θ(q) is also decreasing in n, β, for any given q, which decreases the
right-hand-side of the equation. Thus, the cumulative effect is ambiguous.

To gain traction, we restrict attention to environments in which the elasticity of costs
and F (θ) w.r.t θ is constant. These elasticities can be interpreted as the heterogeneity of
firms or the importance of private information with respect to these costs.

Proposition 5. Suppose F (θ) = θ
1
δ for some δ > 0, CP (q, θ) = θEP g1(q), C

I(q, θ) =

β · θEIg2(q) where EP , EI > 0 and g1(q), g2(q) are some well-behaved functions, then:
14Formally, the function (13) is supermodular in (−q, β, n), thus, the optimal symmetric quality func-

tion is decreasing in β, n.
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1. If EP < EI then s∗′(q) decreases in n, β at every q,

2. If EP > EI then s∗′(q) increases in n, β at every q.

Interestingly, when the elasticities are equal EP = EI = E, the optimal scoring rule
does not depend on either n or β, and can be, in fact, written out: S(q, p) = V (q)

1+δE
− p.

A practical implication of Proposition 5 is that the buyer should adapt the quality
incentives to the degree of competition, i.e., the number of firms n. If there is more het-
erogeneity in production costs than in investment costs (EP > EI), the quality incentives
should become more high-powered when competition rises. If there is less heterogeneity
in production costs than in investment costs (EP < EI), the quality incentives should
become less high-powered when competition rises.15

The parameter β can be interpreted as either a tightening of regulation that increases
the firms’ investment costs or as the inverse of the number of contracts in which the firm
simultaneously competes. In either case, an increase in β acts similarly to the increase
in n.

4 Suboptimality of symmetric mechanisms

In this section, we show that the solution to our mechanism design problem is generically
not a symmetric mechanism. We identify two cases, where the optimal mechanism is
asymmetric with certainty. See Appendix B for the formal proofs.

4.1 Vanishing private information

The first case is that of vanishing private information. We introduce the latter by
parametrizing the production and investment costs with α ≥ 0 like CP (q, αθ) and
CI(q, αθ), so that when α vanishes, the costs become independent on the realization
of the private type. We will refer to α as the importance of private information.

Intuitively, if private information does not enter in any of the costs, the optimal thing
to do is always to award the contract to one ex-ante chosen firm so that the others do not
incur wasteful investment costs. However, there is a caveat. The principal might benefit
from screening if xi(θi) are not constant.

Our result is that the optimal symmetric mechanism is still sub-optimal, when private
information is vanishing.

Proposition 6. There exists α > 0 such that for all 0 6 α < α the optimal symmetric
mechanism is not an optimal mechanism.

15If the buyer is using a linear scoring rule S(q, p) = αq − p, a simple increase in α would make the
quality incentives more high-powered.
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Above we have registered a particular kind of dominance — by a single-bidder mech-
anism, or sole-sourcing. However, there can be other mechanisms that may dominate the
optimal symmetric mechanism.

4.2 Elastic indirect investment costs

For the second case, we need to introduce a reduction of the problem to an equivalent
problem with investment costs only.

Define the indirect investment costs function C(x, θ) as

C(x, θ) := min
q
{C̃I(q, θ) : V (q)− C̃P (q, αθ) = x},

for all x in the range of V (q) − C̃P (q, αθ). Given that quality is one-dimensional, and
C̃I(q, θ) is monotone in q, the minimum is achieved at the lowest root q of the equation
V (q)− C̃P (q, αθ) = x.16 After this cost minimization step, the principal’s utility may be
written simply as

U = E(max
i
xi(θi)−

n∑
i=1

C(xi(θi), θi)). (14)

The problem (P2) is equivalent to choosing functions xi(θi) to maximize (14) and
thus depends solely on the shape of the indirect investment costs. We would like to make
these costs relatively elastic.

We will first observe suboptimality of symmetric mechanisms in a special case: V (q) =

q, CP (q, αθ) = αθ, CI = qγ/γ and F (θ) = θ thus optimal quality is equal to x+ 2αθ and
C(x, θ) = (x+ 2αθ)γ/γ, where γ captures the elasticity.

The optimal symmetric mechanism, derived in Section 3, is characterized by

x∗sym(θ) = (1− θ)
1

γ−1 − 2αθ.

For any cutoff θ0 ∈ [0, 1], define a pair of functions

x1(θ) = (1−min(θ, θ0))
1

γ−1 − 2αθ, x2(θ) = I(θ < θ0)(1− θ)
1

γ−1 − 2αθ,

see Figure 2 (left). These functions are feasible in the relaxed problem (P2) and thus can
be used to establish dominance there. These functions are associated with right-censored
outcome functions which we define later in Section 5.1 and implement via a score floor
auction in Section 5.2. Thus these functions are also feasible in the full problem (P).

16In Lemma 1 in the Appendix we show that given Assumption 2, C(x, θ) is increasing in both argu-
ments and supermodular.
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Figure 2: x1(θ), x2(θ), x∗sym(θ) functions (left) with the optimal cutoff θ0 = 11/36 and the
associated buyer’s utility (right) as function of the cutoff θ0, for γ = 3, α = 4/10.

For γ = 3 and α = 4/10, the utility of the buyer as a function of the cutoff is

U(θ0) =
2

15

(
θ30 +

(√
1− θ0 − 3

)
θ20 +

(
3− 2

√
1− θ0

)
θ0 +

√
1− θ0 + 1

)
.

This function is maximized at an interior point θ0 = 11/36, see Figure 2, yielding an
approximately 3% increase in utility relative to the extreme points (sole sourcing at
θ0 = 0 and optimal symmetric mechanism at θ0 = 1) that have the same utility in this
example. Thus, an optimal mechanism is asymmetric.

More generally, let γ denote the unique number such that lim
x→x+

C(x,1)
(x−x)γ is positive and

finite, where x = V (0) − C̃P (0, α). 17 That is, for small x the indirect cost function
behaves like a power law with degree γ. For this setting, we show that, independently of
α, the optimal symmetric mechanism is dominated when γ is large enough.

Proposition 7. For n = 2, for all γ > 2, the optimal symmetric mechanism is not an
optimal mechanism.

5 Optimal asymmetric mechanisms for two firms

In Section 4, we have seen that symmetric mechanisms are not, in general, optimal
for procurement in the presence of investment costs. What would then be an optimal
mechanism? In this section, we provide results about optimal mechanisms without the a
priori restriction to the symmetric ones. See Appendix C for the formal proofs.

In general, the analysis is hard; to the best of our knowledge, only partial results
17x is the solution to equation 0 = C(x, 1).
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are available in the literature for similar problems18. The key difficulty comes from the
assumption that a firm’s quality is allowed to depend only on her own type. This precludes
the use of pointwise integral maximization, which is typical in mechanism design. As a
result, one has to use variational techniques to characterize an optimum.

We are able to fully characterize the optimal mechanism under additional restrictions
to n = 2 players and the separable cost structure that we define below.

Assumption 3. Separable cost structure:

1. CP (q, θ) = αθ for some α > 0,

2. CI(q, θ) = g(q), for some function g(q): g′(q) > 0, g′′(q) > 0.

3. V (q) = q

Assumption V (q) = q does not lead to the loss of generality, as quality can always be
reparametrized. The α parameter here is consistent with the one defined in Section 4.1.

We start by defining, for the set-up just described, the notion of convexity that, as
we show, is relevant for the shape of the optimal mechanism. Recall that F (θ) is the
cdf of the type θ. Denote by J(θ) = θ + F (θ)

f(θ)
the standard virtual type. It follows from

our Assumption 2 that J(θ) is increasing. Define ξ(z) := 1− J(F−1(1− z)). As J(θ) is
increasing, ξ(z) is also increasing.

We say that marginal investment costs are sufficiently convex iff the function
q → αξ(g′(q)) − q is strictly quasi-convex. We say that marginal investment costs
are sufficiently concave iff the function q → αξ(g′(q))− q is strictly quasi-concave.

Note that the above definition depends not only on the marginal investment costs
g′(q) but on the other primitives as well, thus, the qualifier “sufficiently” is context-
dependent. In the simple setting where the type θ is distributed uniformly on [0,1],
αξ(g′(q))− q = 2αg′(q)− q − 1, so any convex marginal costs g′(q) would be sufficiently
convex while any concave marginal costs g′(q) would be sufficiently concave.

5.1 Optimal outcomes

Recall that in Section 4, we showed that the optimal symmetric mechanism could be
dominated by a certain asymmetric mechanism, which can be thought of as an optimal
symmetric mechanism with a special (asymmetric) treatment of high (inefficient) types.

In a restricted setting with two firms, we are able to prove that this asymmetric mech-
anism will be, in fact, optimal under our novel condition. Recall the optimal symmetric
quality functions q∗sym(θ) and denote a optimal pair of quality functions as (q∗1(θ), q∗2(θ))

and the optimal pair of allocation functions as (z∗1(θ), z∗2(θ)).
18Zhang (2017) provides the result for n = 2 and additively separable environment with quadratic costs;

Gershkov et al. (2021) provide a general condition under which the optimal mechanism is symmetric;
Celik et al. (2009) study binary investment decisions.

18



Figure 3: Allocation function for the (favored) firm 1 and (unfavored) firm 2 in the score
ceiling (left) and score floor (right).

When the marginal costs are sufficiently convex, we show that the relaxed problem
(P2) is solved by the right-censored allocation functions:

z∗1(θ) = I(θ̃1 < θ2), z∗2(θ) = 1− z∗1(θ), (15)

where θ̃1 = min(θ0, θ1). In other words, the allocation is efficient, but as if the type
of firm 1 was capped at the threshold θ0, i.e., censored from the right. The associated
right-censored quality functions are defined as below:

q∗1(θ1) = q∗sym(θ̃1), q∗2(θ2) =

 q∗sym(θ2), θ2 < θ0

q∗sym(1), θ2 > θ0.
(16)

Here, firm 1 produces optimal symmetric quality at her censored type. Regarding firm
2, if her type is above the threshold, she exits, which amounts to producing the lowest
possible quality. For the efficient types, i.e., below the threshold, both firms behave like in
the optimal symmetric mechanism. We will later implement the right-censored outcome
functions using a novel score floor auction.

When the marginal costs are sufficiently concave, we show that the relaxed problem
(P2) is solved by the left-censored allocation functions:

z∗1(θ) = 1− z∗2(θ), z∗2(θ) = I(θ̃2 < θ1) (17)

where θ̃2 = max(θ0, θ2). In other words, the allocation is efficient, but as if the type of
firm 2 was censored from the left. The associated left-censored quality functions are
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Figure 4: Quality function for the (favored) firm 1 and (unfavored) firm 2 in the score
ceiling (left) and score floor (right), given separable cost structure with g(q) = qγ/γ.

defined as below:

q∗1(θ1) =

 q∗sym(θ1), θ1 > θ0

q∗sym(0), θ1 < θ0
, q∗2(θ2) = q∗sym(θ̃2) (18)

Here, firm 2 produces optimal symmetric quality at her censored type. Regarding firm
1, if her type is below the threshold, she becomes the sole supplier, producing quality at
the optimal monopolistic level q∗sym(0). For the inefficient types, i.e., above the threshold,
both firms behave like in the optimal symmetric mechanism.

In both cases, firm 1 is the “favored” firm while firm 2 is the “unfavored” one, but
the censoring is applied to different firms. The typical optimal allocation and quality
functions are illustrated in Figures 3 and 4 for some θ0 ∈ [0, 1]. Left figure corresponds
to left-censored outcomes (score ceilings), right figure corresponds to right-censored out-
comes (score floors).

We summarise in the proposition below.

Proposition 8. Suppose n = 2 and Assumption 3 holds. Then (P2) is solved by the
right-censored allocation and quality functions when the marginal costs are sufficiently
convex and by the left-censored allocation and quality functions when the marginal costs
are sufficiently concave.

The result of Proposition 8 is especially clear when the type distribution is uniform.19

Corollary 1. Suppose that in the setting of Proposition 8 it additionally holds that θi is
distributed uniformly on [0,1]. Then:

19Note that Corollary 1 implies that quadratic (total) investment costs, which are often assumed, are
a knife-edge case with g′′′ = 0.
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1. If g′′′(q) > 0, the optimal allocation and quality functions are right-censored.

2. If g′′′(q) < 0, the optimal allocation and quality functions are left-censored.

Finally, recall that, without the symmetry restriction, the buyer’s payoff is:

Uasy = E
n∑
i=1

(
x(qi, θi)zi(θ)− C̃I(qi, θi)

)
.

Substituting (q∗1(θ), q∗2(θ)) into Uasy yields an upper bound Uasy on the buyer’s utility in
the full problem (P). It remains to show that it can also be attained.

5.2 Implementation

Now, we describe the implementation of the optimal quality functions. Similarly to
Section 3.2, we will show the implementability of all left- and right-censored outcome
functions, defined by formulas (16) and (18) for some threshold θ0 ∈ [0, 1], and thus the
optimal ones.

5.2.1 Score floor auction

In this section, we aim to implement the optimal outcome and quality functions when
they are right-censored.

Recall from Proposition 2 that the optimal symmetric quality q∗sym(θ) can be imple-
mented by a first-score auction with a quasi-linear score function S(q, p) = s(q)−p where
s(q) is defined by (8). Furthermore, under Assumption 3, the score function is truthful
in the optimal symmetric mechanism, and the equilibrium score strategy takes the form

S∗sym(θ) = V (q∗sym(θ))− αθ −
g(q∗sym(θ)) + IR(θ, 1)

PWsym(θ)
. (19)

We introduce a few new details into the traditional design of the first-score auction.
First, there is a level S below which the score does not count, i.e., the score floor.
Effectively, this means that each firm faces a reserve price of s(qi) − S, where qi is her
quality. Submitting below the score floor is equivalent to exiting the auction. Second,
the favored firm gets a bonus B if her score surpasses S regardless of winning. Third, in
the case of a tie, the favored firm wins. Apart from that, the auction proceeds as usual.

Formally, the mechanism is such that messages are the prices offered by the firms.

• For the favored bidder, the allocation and transfers are:

z1(m1,m2, q1, q2) = I(s(q1)−m1 ≥ max{s(q2)−m2, S})

t1(m1,m2, q1, q2) = m1 · z1(m1,m2, q1, q2) +B · I(s(q1)−m1 ≥ S).
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• For the unfavored bidder, the allocation and transfers are:

z2(m1,m2, q1, q2) = I(s(q2)−m2 > max{s(q1)−m1, S})

t2(m1,m2, q1, q2) = m2 · z2(m1,m2, q1, q2).

We will refer to this mechanism as the score floor auction for brevity.

Proposition 9. Suppose n = 2 and Assumption 3 holds. For any θ0 ∈ [0, 1), the right-
censored outcome and quality functions can be implemented by a score floor auction with
a quasi-linear score (8), a score floor and bonus equal to

S = S∗sym(θ0) +
IR(θ0, 1)

1− F (θ0)
, B = α(1− F (θ0))(1− θ0),

and the equilibrium score strategies S∗i (θ) = max{S∗sym(θ) + IR(θ0,1)
1−F (θ)

, S} for both firms.

Similarly to Proposition 2, to prove Proposition 9, we take care of (double) deviations
in score and quality, paying special attention to the partial asymmetry of the allocation
and quality functions.

What is the purpose of the bonus B? The score floor alone would not suffice, as it
would cut off all relatively inefficient (θ > θ0) types of both firms — they would decline to
participate due to their maximal profit being negative. The bonus restores the incentives
to participate for the inefficient types of the favored firm.

Theorem 2. Suppose n = 2 and Assumption 3 holds. If marginal investment costs are
sufficiently convex, there exists θ0 ∈ [0, 1] such that the score floor auction is an optimal
mechanism, i.e., it achieves the bound Uasy and solves the full problem (P).

5.2.2 Score ceiling auction

Similar to how the score floor auction implemented the right-censored outcome and qual-
ity functions in the previous section, we aim to implement the left-censored outcome and
quality functions with a modified scoring auction.

This new auction design features a score ceiling S̄ — the maximally possible level
of the score and a kickback K, paid by the favored firm only if it won the contract by
bidding a score equal to the score ceiling. Similarly to the score floor auction, the favored
firm wins in case of a tie. Thus, bidding a score equal to the score ceiling S̄ guarantees
a victory for the favored firm; it pays the kickback only in this case of sure victory.

Formally, a score ceiling auction is a mechanism such that messages are the prices
offered by the firms.
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• For the favored bidder, the allocation and transfers are:

z1(m1,m2, q1, q2) = I(S ≥ s(q1)−m1 ≥ s(q2)−m2)

t1(m1,m2, q1, q2) = m1 · z1(m1,m2, q1, q2)−K · I(S = s(q1)−m1 ≥ s(q2)−m2).

• For the unfavored bidder, the allocation and transfers are:

z2(m1,m2, q1, q2) = I(S ≥ s(q2)−m2 > s(q1)−m1)

t2(m1,m2, q1, q2) = m2 · z2(m1,m2, q1, q2).

We will refer to this mechanism as the score ceiling auction.

Proposition 10. Suppose n = 2 and Assumption 3 holds. For any θ0 ∈ [0, 1), the left-
censored outcome and quality functions can be implemented by a score ceiling auction
with a quasi-linear score (8), a score ceiling S̄ = S∗sym(θ0) and kickback

K = max
q

[V (q)− g(q)]−max
q

[
V (q)− g(q)

1− F (θ0)

]
+ α

F (θ0)

1− F (θ0)

∫ 1

θ0

(1− F (u))du. (20)

and the equilibrium strategies S∗i (θ) = min{S∗sym(θ), S̄} for both firms.

The name “kickback” is warranted since K > 0. To see this, note that maxq[V (q) −
g(q)] ≥ maxq

[
V (q)− g(q)

1−F (θ0)

]
as 1/(1− F (θ)) ≥ 1.

We again stress that the role of the side payment K is to provide correct incentives;
it is in no way evidence of corruption, which is absent from our model as the buyer and
the auctioneer are one and the same. The kickback is needed to ensure that the types
θ1 > θ0 of the favored firm do not rush to win for sure with the score S̄ and thus, sufficient
competition with the types θ2 > θ0 of firm 2 in the low-score range is maintained.

Theorem 3. Suppose n = 2 and Assumption 3 holds. If marginal investment costs are
sufficiently concave, there exists θ0 ∈ [0, 1] such that the score ceiling auction is an optimal
mechanism, i.e., it achieves the bound Uasy and solves the full problem (P).

5.3 Example: constant-elasticity investment costs

In the previous section, we have described some of the optimal mechanisms that can
emerge for two players. In this section, we will characterize all optimal mechanisms for
two players and a 2-dimensional class of settings such that the type distribution F is
uniform, V (q) = q, CP (q, θ) = αθ and CI(q, θ) = qγ/γ where γ > 1 is the elasticity of
investment costs and α > 0 is the importance of private information.

The optimal mechanism takes one of four shapes:
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Figure 5: Optimal mechanism with n = 2, F (θ) = θ, CP = αθ, CI = qγ/γ.
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• a score floor auction if γ > 2 and 1
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which we illustrate in Figure 5.

5.4 Discussion of optimal asymmetric mechanisms

Pooling

The nature of equilibrium supporting our mechanism is that of semi-symmetric and semi-
separating. To be precise, the spectrum of types is split by the threshold θ0. To the one
side from the threshold, the equilibrium behaves as a symmetric separating one. On the
other side of the threshold, it behaves as an asymmetric (our tie-breaking rule) pooling
one. Pooling happens in both score and quality dimensions, but the latter is due to the
specific shapes of cost functions in Assumption 3, and so is not generic.

We can speculate that for the environments that are neither sufficiently convex nor
sufficiently concave, the optimal mechanism would feature ranges of symmetric and asym-
metric behavior separated by multiple thresholds and multiple side payments.
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Side payments

Given the pooling of types at a score floor or ceiling, it is only natural that the transfer
experiences a discontinuity (our side payment) at the threshold type to align the IC
constraints around the threshold. Without the discontinuity in transfers, the equilibrium
utility would be discontinuous due to a sudden change in the probability of winning, so
the types next to the threshold would surely deviate. In particular, suppose there was no
required kickback in the score ceiling mechanism. In this case, the types of the favored
bidder just to the right of the threshold would opt to win without competition, making
the outcome more asymmetric than desired. The kickback ensures that the types to
the right of the threshold instead choose to compete with the other bidder fairly, thus
maintaining exactly the desired degree of outcome symmetry.

It is worth mentioning that score floor and score ceiling mechanisms are not just
mirror images of each other. Regardless of the mechanism, every type’s equilibrium
profit (informational rent) depends on the allocation to all worse types but not better
types. This means that the modifications needed to create an asymmetry among the best
and among the worst types will be different. To create an asymmetry among the best
types without affecting the worst (rightmost) types, one only has to adjust the classical
auction design “for the strong bidders”, so the side payment in the score floor is only paid
by the firm that won. A naive attempt to similarly create asymmetry among the worst
(rightmost) types would inadvertently interfere with the IC constraints for the best types.
Thus, the proper adjustment should affect “both weak and strong bidders”. As a result,
the side payment in the score floor auction, unlike the one in the score ceiling auction,
has to be paid regardless of winning.

Ex ante symmetry

It is also worth mentioning that while the score floor and score ceiling mechanisms feature
asymmetric choices of quality and bid, they paradoxically lead to a symmetric distribution
of scores. Indeed, the strategies are the same for both favored and unfavored firms for
the equilibria suggested in Proposition 9 and Proposition 10. Even sole sourcing, the
extreme asymmetric mechanism, can be thought of as a special case of either score floor
or score ceiling, where two firms arrive with the same (known, constant) score, and one
of them wins due to the tie-breaking rule.

Furthermore, in the range of types where the equilibrium is separating, the profits for
the two firms coincide up to a translation constant. Thus, the underlying structure of
ex-ante symmetric agents is not entirely lost.

How should the favored bidder be chosen? Of course, the buyer can choose any firm
at random. Crucially, the firms should know if they are favored before deciding on their
qualities at the announcement of the mechanism. We also recommend not delegating the
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choice of the favored firm to an independent party, as the latter may want to extort the
extra surplus granted by the favored status. To summarize, the choice of the favored firm
should be made publicly and credibly.

Second-score implementation

Finally, one may wonder if a dominant-strategy implementation is possible here and
whether it would be, in some sense, simpler. Indeed, such an implementation exists
when there are no investment costs, see Che (1993); Asker and Cantillon (2008, 2010),
and is called a second-score auction. Moreover, it has “truthful bidding” in the sense
that the firms bid so to maximize the apparent social surplus – the difference between
the buyer’s s(q) and firm’s CP (q). Unfortunately, in the presence of investment costs,
truthful bidding is not the dominant strategy here, which makes it far less appealing
than, for example, truthful bidding in a second-price auction.

6 Additional results

In this section, we provide a number of additional results about the asymmetric mecha-
nisms, see Appendix D for formal proofs.

6.1 Symmetry and private information

In Section 5.3, we have classified all the optimal mechanisms that emerge in a 2-dimensional
class of settings in Figure 5. We can argue that this figure remains fairly unchanged for
other type distributions F .

Proposition 11. Suppose n = 2 and Assumption 3 holds. Then, for the optimal score
floor, the optimal threshold θ∗0 is weakly increasing, while for the optimal score ceiling, it
is weakly decreasing in the importance of private information α.

In other words, both the optimal score floor and the optimal score ceiling mechanism
become more symmetric (with the sole sourcing and the optimal symmetric mechanisms
being the extreme cases) as α grows. The intuition is related to the main economic
trade-off faced by the principal when deciding on the level of mechanism asymmetry. As
outlined in the introduction, this is the trade-off between ex-post efficiency and avoidance
of duplication of investment costs. On the one hand, the principal would like to award the
contract to the most efficient producer to obtain the best possible price-quality combina-
tion. However, to find out which one is the most efficient best, one has to treat the firms
symmetrically — and this will inevitably lead to both firms incurring investment costs.
By firms’ participation constraints, these costs must ultimately be paid by the principal
for both firms. On the other hand, if the principal constrains herself to a sole supplier
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a priori, she will have to compensate only one firm for the investment costs; however, it
might not turn out to be the most efficient supplier. In general the principal’s dilemma
is resolved at some intermediate level of mechanism symmetry. When the importance
of private information α grows, the ex-post efficiency motive becomes stronger and the
optimal solution moves towards the optimal symmetric mechanism.

Because α is the degree of informational asymmetry between the buyer and the suppli-
ers (the higher α, the higher is the degree of the principal’s uncertainty about a supplier’s
production costs), the message of Proposition 11 can be formulated as follows: Informa-
tional asymmetry leads to the symmetry of the optimal mechanism.

6.2 Symmetry and efficiency

Even though in this paper we analyze mostly buyer-optimal mechanisms, an interesting
question is how the degree of asymmetry compares between the buyer-optimal and the
society-optimal (efficient) mechanism. We can easily answer this question when θ is
uniform. Somewhat unexpectedly, we find that the efficient mechanism exhibits more
favoritism than the buyer-optimal mechanism, not less.

Proposition 12. Suppose n = 2, F (θ) = θ and Assumption 3 holds. Then, for the
optimal score floor mechanism, the optimal threshold θ∗0 is weakly greater, while for the
optimal score ceiling, it is weakly lower in the optimal mechanism than in the efficient
mechanism.

The intuition behind Proposition 12 is that while the buyer takes into account virtual
costs, the social planner takes into account just costs when determining the optimal degree
of mechanism asymmetry. Since virtual costs are more responsive to θ than just costs
(because they also include type-dependent information rents) the buyer is more concerned
about ex-post efficiency than the social planner. Hence, by the logic of Proposition 11
the buyer should choose a more symmetric mechanism than the social planner.

6.3 Restricted entry

One interesting family of asymmetric mechanisms is mechanisms where the principal
allows only k ≤ n firms to enter, and employs the optimal symmetric mechanism for these
k firms. Such mechanisms may be more practical than arbitrary asymmetric mechanisms
since this particular kind of asymmetry may be less salient, and thus on the surface such
mechanisms may look more “fair”.

Given that the principal only chooses k ≤ n, which k would be optimal for him? One
reasonable guess is that it may be often optimal to set k = 2: this choice saves a lot of
investment costs while still preserving some competition. We show that in a large class
of settings, including the example in Section 5.3, this guess is wrong. Namely, we show
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that often the optimal solution is “one-or-all”: depending on the importance of private
information, it is always optimal for the principal to either allow only 1 firm or all of the
firms to enter. In this sizable set of situations, no intermediate k ∈ {2, 3, . . . , n− 1} can
ever be optimal.

Proposition 13. Suppose Assumption 3 holds and g(0) = 0, g′(q) is strictly increasing
and g(q)√

g′(q)
is also strictly increasing. Suppose also that F (θ) = θ. Then, the buyer’s

utility U(k) is a quasi-convex function of the number of firms k allowed to enter. Thus, it
is optimal for the principal to allow either one or all firms to enter, that is, k∗ ∈ {1, n}.

The condition that g(q)√
g′(q)

is strictly increasing means that, in a certain sense, in-

vestment costs are not too convex. However, this condition is admittedly mild, as it is
satisfied for g(q) = qγ and all γ > 1 and even for exponential costs g(q) = exp(q)− 1.

Example: Suppose g(q) = q2/2. Then, the buyer’s utility from the optimal symmetric
mechanism with k firm is

U(k) =
1

2

k

2k − 1
− α

k + 1
,

which is a quasi-convex function. Thus, there exists an α0 such that for

k∗(α) =

 1, α < α0;

n, α > α0.

Proposition 13 also explains the quasi-convex behavior of utility depicted in Figure 2
in Gershkov et al. (2021) for a related additively separable setting.

7 Conclusion

In this paper, we considered the problem of optimal procurement in the presence of
both winner-pay (production) and all-pay (investment) costs, and contractible quality.
For this, we built a special mechanism design framework in which outcomes can be
conditioned on both messages and qualities. In this framework, we first characterized
optimal symmetric mechanisms. We show that an optimal symmetric mechanism is a
scoring auction with a scoring rule that is either flatter or steeper than the well-known
rule obtained under assumption of winner-pay costs only (Che, 1993). Crucially, even
with ex ante symmetric firms, an optimal mechanism may be asymmetric, i.e., exhibit
favoritism. This happens when the importance of private information is relatively low or
the elasticity of investment costs with respect to quality is sufficiently high.

We characterized optimal mechanisms without the symmetry restriction which can
be either sole sourcing, the symmetric scoring auction, or, depending on the curvature
of marginal investment costs, a certain combination of the two. We identify two com-
binations that may be optimal. One involves a discriminating treatment of relatively
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inefficient types of two firms (a score floor auction) while the other discriminates between
relatively efficient types of two firms (a score ceiling auction). Both involve side-payments
that are needed to ensure the correct incentives of the favored bidder.

It is hard to ignore that our mechanisms resemble corruption. Indeed, in the score
ceiling auction, the side payment is paid to the auctioneer whenever the favored firm is
guaranteed to win. Moreover, even our environment resembles those that are commonly
associated with corruption: large investment costs and vanishing private information.
But they are, in fact, quite different. Favoritism is efficient here, because it reduces the
duplication of investment costs, and the auctioneer can not be bribed, as he is also the
buyer. Thus, favoritism is not necessarily a sign of corruption.

To conclude, it is well known that, in a procurement auction, buyer sometimes tries
to give an advantage to his preferred bidder, not because he is corrupt, but because he
believes that this bidder would do the best job. One can speculate that introducing
asymmetric mechanisms into the procurement code may be a way to legitimize such
favoritism.
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Appendix

A Proofs for Section 3

Denote the indirect investment costs function C(x, θ) as

C(x, θ) := min
q
{C̃I(q, θ) : V (q)− C̃P (q, θ) = x},

for all x in the range of V (q)− C̃P (q, θ).

Lemma 1. Under Assumptions 1 and 2, the indirect investment costs function C(x, θ)

is strictly increasing in both arguments, convex in x and is supermodular in (x, θ).

Proof. Recall that V is concave and C̃P is strictly convex in q, thus the equation V (q)−
C̃P (q, θ) = x has exactly two roots for all levels of x except the highest feasible one.

Since C̃I is increasing in q, it is optimal to pick the smaller root, which we denote
as q̂(x, θ). Clearly, q̂(x, θ) is increasing in x, and so is the associated level of C̃I . Thus,
C(x, θ) is increasing in x.

Furthermore, since both C̃P , C̃I are increasing in θ, q̂(x, θ) is increasing in θ and so
is the associated level of C̃I . Thus, C(x, θ) is increasing in θ.

To obtain C ′′xx and C ′′xθ we first compute

C ′x(x, θ) =
C̃I
q (q, θ)

V ′(q)− C̃P
q (q, θ)

∣∣∣∣∣
q=q̂(x,θ)

which is the value of the Lagrange multiplier in the constrained optimization. Further
differentiating with respect to x or θ we obtain

C ′′xx(x, θ) =
∂

∂q

(
C̃I
q (q, θ)

V ′(q)− C̃P
q (q, θ)

)∣∣∣∣∣
q=q̂(x,θ)

· q̂′x(x, θ)

C ′′xθ(x, θ) =
∂

∂q

(
C̃I
q (q, θ)

V ′(q)− C̃P
q (q, θ)

)∣∣∣∣∣
q=q̂(x,θ)

· q̂′θ(x, θ) +
∂

∂θ

(
C̃I
q (q, θ)

V ′(q)− C̃P
q (q, θ)

)∣∣∣∣∣
q=q̂(x,θ)

which are both positive, since q̂ is increasing in x and θ; C̃I
q , C̃

P
q are both increasing in q

and θ; and V ′ is decreasing in q. Thus, C(x, θ) is convex in x and supermodular.

The principal’s utility may be written simply as

U = E(max
i
x(θi)−

n∑
i=1

C(x(θi), θi)). (21)
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Lemma 2. In an optimal symmetric mechanism, the virtual production surplus x(q(θ), θ)

is decreasing in θ.

Proof. Consider the reduced (x-only) problem of maximizing (21) over the schedule
x(θi) := x(q(θ), θ), which is the same for all bidders. That is, consider the problem

max
x(θ)

Emax
i
x(θi)− nEC(x(θ), θ), (22)

where C(x, θ) is the indirect investment cost function and where we used symmetry to
write the costs term. After x(θ) is chosen, the quality q(θ) is chosen to solve minq C̃

I(q, θ)

s.t. v(q)− C̃P (q, θ) = x(θ).
We show that for an arbitrary function x(θ) there exists a decreasing function x̃(θ)

such that the objective (A) is larger under x̃(θ) than under x(θ). For that, we leverage
that fact that by Lemma 1, the indirect investment cost function C(x, θ) is supermodular.

Namely, we take x̃(θ) to be the equimeasurable decreasing rearrangement of x(θ),
that is, the decreasing function x̃(θ) such that the probability distribution of x̃(θ) is the
same as that of x(θ). If G(x) is the cdf of x(θ), it is not hard to see that x̃(θ) satisfies
G(x̃(θ)) ≡ 1− F (θ).

By construction, Emaxi x(θi) is unchanged when x(θ) is replaced with x̃(θ). The
second term, the negative costs, however, weakly increases by Theorem 3 from Crowe
et al. (1986), a general result about how an integral of a supermodular function of two
inner functions changes when the inner functions are replaced by their rearrangements.
That is, Theorem 3 from Crowe et al. (1986) implies that EC(x̃(θ), θ)) ≤ EC(x(θ), θ))

if C(x, θ) is supermodular, which it indeed is. Summing up, we get that the objective
weakly increases when x(θ) is replaced with x̃(θ); restricting attention to decreasing
functions x(θ) is without loss.

Remark: Why did we need to employ rearrangements and not just standard mono-
tone comparative statics results? The answer is that the monotonicity analysis is com-
plicated by the symmetry constraint. Without it, we would have the problem

max
xi(θi)

Emax
i
xi(θi)−

∑
i

C(xi(θi), θi).

Then, fixing xj(θj), the problem of optimization over xi(θi) could be reduced to pointwise
maximization to which we could apply standard monotone comparative statics. With
symmetry and no a priori knowledge that x(θ) is decreasing, no reduction to pointwise
optimization can be done.

Lemma 3. Let q∗(z, θ) be the solution to the problem

max
q

[s(q)− CP (q, θ)]z − CI(q, θ).
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Then, q∗(z, θ) is increasing in z and decreasing in θ.

Proof. By the first-order condition, q∗(z, θ) satisfies [s′(q) − CP
q (q, θ)]z = CI

q (q, θ) > 0,
so s′(q) − CP

q (q, θ) > 0 in a neighborhood of q∗(z, θ). Thus, the objective function
is supermodular in (q, z) in a neighborhood of q∗(z, θ), which implies that q∗(z, θ) is
increasing in z.

The fact that q∗(z, θ) is decreasing in θ follows simply from the fact that the objective
is submodular in (q, θ) by our assumptions on costs (assumption 1).

Lemma 4. For any θ0 ≤ 1, the score bidding strategy

S∗(θ|θ0) = s(q(θ))− CP (q(θ), θ)− CI(q(θ), θ) + IR(θ, θ0)

(1− F (θ))n−1
, (23)

where s(q) is given by (8), is decreasing in θ for θ ≤ θ0.

Proof. By straightforward differentiation, after simplifications using (8), we get

∂S∗(θ|θ0)
∂θ

= − (n− 1)f(θ)

(1− F (θ))n
(
CI(q(θ), θ) + IR(θ, θ0)

)
< 0, (24)

as CI > 0, IR(θ, θ0) ≥ 0 for θ ≤ θ0.

Proof of Proposition 2

Proof. Choosing quality q and price p is equivalent to choosing quality q and score S =

s(q)− p. Given score strategy S(θ), price strategy is recovered by p(θ) = s(q(θ))− S(θ).
So it is sufficient to establish the existence of equilibrium in quality-score pairs.

We shall show that such a scoring auction has a BNE (q, S) = (q(θ), S∗(θ)) where
S∗(θ) is given by (9) with θ0 = 1. That is, with a slight abuse of notation we write S∗(θ)
for S∗(θ|1).

This amounts to showing the following triple continuum of inequalities:

∀(θ, q′, s′) (s(q(θ))− CP (q(θ), θ)− S∗(θ))P(S∗(θ) > max
j 6=i

S∗(θj))− CI(q(θ), θ) ≥

(s(q′)− CP (q′, θ)− s′)P(s′ > max
j 6=i

S∗(θj))− CI(q′, θ) (25)

The difficulty in showing (25) is that every double deviation (q′, s′) is feasible. To deal
with this problem, we employ a sequential optimization approach. Namely, we imagine
that a firm first chooses a score to bid and then chooses a quality with the score bid fixed.
At the first (score-choice) stage a firm anticipates its optimal quality choice at the second
stage.

Denote by Π(q, S|θi) the profit of firm i if every other firm plays according to the al-
leged BNE and firm i chooses quality q and score bid S. Define Πmax(S|θi) := maxq Π(q, S)|θi).
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That is, Πmax(S|θi) is the maximum profit firm i can get by bidding score S when the
quality is adjusted optimally to the score bid.

It is sufficient to show that (i) for every θi, Πmax(S|θi) is maximized by the score bid
(9) and that (ii) after choosing the score bid (9) in the first stage, a firm will choose the
given quality q(θ) at the second stage.

We will start from the end, that is, with part (ii). By lemma 4, S∗(θ) is strictly
decreasing. Thus, when bidding the score S∗(θ) a firm wins with prob. P(S∗(θ) >

maxj 6=i S
∗(θj)) = (1− F (θ))n−1.

Having chosen the score bid S = S∗(θ), the firm solves

max
q

Π(q, S∗(θ) = max
q

[s(q)− CP (q, θ)− S∗(θ)](1− F (θ))n−1 − CI(q, θ).

We shall show that q = q(θ) solves this problem, or, equivalently, that q(θ) = q∗((1 −
F (θ))n−1, θ) where recall that q∗(z, θ) is the solution to the problem

max
q

[s(q)− CP (q, θ)]z − CI(q, θ).

The first derivative of the objective is

Πq(q, S
∗(θ)) = [s′(q)− CP

q (q, θ)](1− F (θ))n−1 − CI
q (q, θ).

After plugging s′(q) from (8), it becomes

Πq = [CP
q (q, θ(q))− CP

q (q, θ)](1− F (θ))n−1 +

(
1− F (θ)

1− F (θ(q))

)n−1
· CI

q (q, θ(q))− CI
q (q, θ).

Now set q = q(t), where q(·) is the quality function to implement. We get

Πq = [CP
q (q(t), t)−CP

q (q(t), θ)](1−F (θ))n−1 +

(
1− F (θ)

1− F (t)

)n−1
·CI

q (q(t), t)−CI
q (q(t), θ).

By supermodularity of CP (q, θ), CI(q, θ), and the fact that
(

1−F (θ)
1−F (t)

)n−1
< 1 iff t < θ, we

get that Πq < 0 if t < θ, Πq > 0 if t > θ and Πq = 0 if t = θ. As q(θ) is strictly decreasing,
this implies that Πq > 0 if q(t) < q(θ), Πq < 0 if q(t) > q(θ), Πq = 0 if q(t) = q(θ). Thus,
Π(q, S∗(θ)) is strictly increasing for q < q(θ), and strictly decreasing for q > q(θ), which
means that q = q(θ) is actually the optimal quality for the firm, as desired.

Now we turn to part (i). Clearly, it is suboptimal for a firm to bid any score bid
outside of the range of S∗(θ) (given that the competitors are bidding according to S∗(θ)).
So we set S = S∗(τ) where τ is the type that the firm i mimics when bidding S = S∗(τ).
Abusing notation, we write Πmax(τ |θ) for Πmax(S

∗(τ)|θ).
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So,

Πmax(τ |θ) ≡ max
q

(s(q)− CP (q, θ)− S∗(τ))(1− F (τ))n−1 − CI(q, θ). (26)

Our task is to show that Πmax(τ |θ) is maximized at τ = θ. To this end, we will use
Envelope Theorem to compute ∂

∂τ
Πmax(τ |θ) and then show that ∂

∂τ
Πmax(τ |θ) is positive

for τ < θ and negative for τ > θ which implies global optimality of τ = θ.
First, we compute ∂

∂τ
[S∗(τ)(1− F (τ))n−1].

∂

∂τ
[S∗(τ)(1− F (τ))n−1] =

∂

∂τ
[S∗(τ)](1− F (τ))n−1 − (n− 1)f(τ)(1− F (τ))n−2S∗(τ) =

− (n− 1)f(τ)

(1− F (τ))n
(
CI(q(τ), τ) + IR(τ, 1)

)
(1− F (τ))n−1 − (n− 1)f(τ)(1− F (τ))n−2S∗(τ)) =

− (n− 1)(1− F (τ))n−2f(τ)[s(q(τ))− CP (q(τ), τ)], (27)

where we used (24) for ∂
∂τ

[S∗(τ)] and (23) for S∗(τ).
The optimal quality in (26) is q∗((1−F (τ))n−1, θ) where q∗(z, θ) is notation from the

above. Differentiating (26), using Envelope Theorem and then using (27), we get

∂

∂τ
Πmax(τ |θ) =

−(n−1)(1−F (τ))n−2f(τ)(s(q∗((1−F (τ))n−1, θ))−CP (q∗((1−F (τ))n−1, θ), θ))− ∂

∂τ
[S∗(τ)(1−F (τ))n−1] =

(n−1)(1−F (τ))n−2f(τ)
[
s(q(τ))− s(q∗((1− F (τ))n−1, θ)) + CP (q∗((1− F (τ))n−1, θ), θ)− CP (q(τ), τ)

]
.

In the proof of part (ii) above we showed that q(τ) ≡ q∗((1 − F (τ))n−1, τ). For brevity,
denote q̃τ (u) := q∗((1−F (τ))n−1, u). We showed that q̃τ (τ) ≡ q(τ). Also, because q∗(z, θ)
is strictly increasing in z by Lemma 3, q̃τ (u) < q̃u(u) ≡ q(u) for u < τ . It follows from
the above that ∂

∂τ
Πmax(τ |θ) has the same sign as

s(q̃τ (τ))− s(q̃τ , θ) + CP (q̃τ (θ), θ)− CP (q̃τ (τ), τ) =∫ τ

θ

s′(q̃τ (u))dq̃τ (u)−
∫ τ

θ

CP
q (q̃τ (u), u)dq̃τ (u)−

∫ τ

θ

CP
θ (q̃τ (u), u)du.

Plugging s′(q) from (8) and rearranging, we finally get that ∂
∂τ

Πmax(τ |θ) has the same
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sign as ∫ τ

θ

[CP
q q̃τ (u), θ(q̃τ (u)))− CP

q (q̃τ (u), u)]dq̃τ (u)+ (28)∫ τ

θ

CI
q (q̃τ (u), θ(q̃τ (u)))

(1− F (θ(q̃τ (u))))n−1
dq̃τ (u)− (29)∫ τ

θ

CP
θ (q̃τ (u), u)du. (30)

Suppose θ < τ . We discussed above that for u < τ q̃τ (u) < q(u). Applying the decreasing
function θ(q) to both sides, we get θ(q̃τ (u)) > θ(q(u)) ≡ u. Hence, due to supermodularity
of CP (q, θ), CP

q q̃τ (u), θ(q̃τ (u))) − CP
q (q̃τ (u), u) > 0. Adding the fact that by lemma 3

dq̃τ (u) < 0, we conclude that for θ < τ the term (28) is negative. Likewise, for θ < τ

the term (29) is negative, as CI
q > 0 and dq̃τ (u) < 0. The term (30) is positive for θ < τ

as CP
θ > 0. To sum up, we get that for τ > θ ∂

∂τ
Πmax(τ |θ) < 0. Analogously, for τ < θ

∂
∂τ

Πmax(τ |θ) > 0; obviously, for τ = θ ∂
∂τ

Πmax(τ |θ) = 0.

We conclude that Πmax(τ |θ) is strictly increasing for τ < θ and strictly decreasing for
τ > θ; τ = θ is the global maximum of Πmax(τ |θ), as desired. Together with part (2)
shown above this implies that (q(θ), S∗(θ)) is indeed every firm’s strategy in a symmetric
BNE.

In proof above we showed not only that it is optimal to bid S∗(τ) = S∗(θ) but that the
objective function Πmax(τ |θ) is single-peaked (strictly quasi-concave) in τ . This a stronger
property that will be extremely useful in proving the correctness of implementation in
the asymmetric case. For future reference, we state in the following lemma:

Lemma 5. The score-bid-only objective function Πmax(τ |θ) ≡ maxq Π(q, S∗(τ)|θ) is single-
peaked in τ with the peak at τ = θ.

Proof. Follows from the last part of proof of Proposition 2.

Proof of Proposition 5

Proof. From (8), we have

s′∗(q) ≡ θEP (q)g′1(q) +
βθEI (q)g′2(q)

(1− F (θ(q)))n−1
, (31)

where θ(q) is the inverse of the optimal q∗(θ, n, β). We suppress the dependence of θ(q)
on β and n for brevity.

At the same time, from the optimality of θ(q),

(1− F (θ(q)))n−1(v′(q)− (1 + EP δ)θ
EP (q)g′1(q))− β(1 + EIδ)θ

EI (q)g′2(q) ≡ 0. (32)
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Solving (32) for βθEI (q)g′2(q) and plugging this in (31), we get

s′∗(q) ≡ θEP (q)g′1(q) +
v′(q)− (1 + EP δ)θ

EP (q)g′1(q)

1 + EIδ
=
v′(q) + δ(EI − EP )θEP (q)g′1(q)

1 + EIδ
.

It follows from (13) that θ(q) is decreasing in both β and n for a fixed q. From this, the
result is immediate.

B Proofs for Section 4

Proof of Proposition 6

Proof. We will show the suboptimality of the optimal symmetric mechanism for α = 0.
Namely, we will show that for α = 0 the completely asymmetric mechanism in which
only one bidder is left dominates the optimal symmetric mechanism. Then the result
follows from continuity (the objective at the completely asymmetric mechanism and the
objective at the optimal symmetric mechanism are continuous in α).

When α = 0, the indirect investment costs C(x, θ) is just a function of x. Abusing
notation, we write C(x). Denote by Hi(x) the cdf of xi(θi). We can write the objective
as a functional of Hi(x) and optimize over Hi(x). That is,

U = Emax
i
xi(θi)− E

n∑
i=1

C(xi(θi))

=

∫ +∞

0

(
1−

n∏
i=1

Hi(x)

)
dx−

∫ +∞

0

n∑
i=1

C ′(x)(1−Hi(x))dx

=

∫ +∞

0

(
1−

n∏
i=1

Hi(x)−
n∑
i=1

C ′(x)(1−Hi(x))

)
dx. (33)

Ignoring the monotonicity constraint for Hi(x), let’s optimize (33) pointwise. The inte-
grand is linear in each of Hi, so without loss of generality at every x, Hi(x) ∈ {0, 1}. It is
easy to see that at optimum at every x at most one of Hi(x) is 0; otherwise the objective
can be increased since C ′(x) ≥ 0 for x > 0. It remains to compare two cases: all of Hi are
1 and all but one of Hi is 1, and the remaining one is zero. In the first case, the integrand
is 0; in the second case, it is 1−C ′(x). Thus, when 0 ≥ 1−C ′(x), it is optimal to set all
Hi(x) to 1; if 0 < 1−C ′(x), it is optimal to set all but one Hi(x) to 1. Suppose, without
loss of generality, that bidder 1 is the unique bidder with Hi(x) = 0 for C ′(x) < 1. Then,
the optimal cds of xi(θi) are

H∗1 (x) =

 0, C ′(x) < 1;

1, C ′(x) ≥ 1;
and for i > 1, H∗i (x) = 1 for all x ≥ 0. (34)
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These cdfs of xi(θi) are readily implementable.
The functions H∗i are nondecreasing, hence this is indeed the optimal mechanism.

This is the completely asymmetric mechanism in which only one bidder is allowed to
participate and this bidder produces the monopoly surplus xm that satisfies C ′(xm) = 1.

The optimal symmetric mechanism M∗
sym maximizes (33) pointwise under the con-

straint that Hi(x) = Hj(x) for all i, j. Taking FOC, one gets H∗sym(x) = n−1
√
C ′(x).

After changing H1(x) from H∗sym(x) to H∗1 (x) given by (34) the objective does not change
but if after that H2(x) is changed from H∗sym(x) to H∗1 (x) given by (34), the objective
strictly increases; hence M∗

sym is not optimal and is strictly dominated by M∗.
Write M∗(α) and M∗

sym(α) for the optimal mechanism and the optimal symmetric
mechanism as functions of α. Write EU(M,α) as the principal’s expected utility as the
function of mechanism and α. We have shown above that

EU(M∗(0), 0) > EU(M∗
sym(0), 0).

By continuity, this implies that

EU(M∗(0), α) > EU(M∗
sym(α), α)

for all sufficiently small α. �

Proof of Proposition 7

Proof. Principal’s utility as a function of threshold θ0 can be written as

U(θ0) = n

∫ θ0

0

max
x

[
(1− θ)n−1x− C(x, θ)

]
dθ +

∫ 1

θ0

max
x

[
(1− θ0)n−1x− C(x, θ)

]
dθ.

Denote by x∗(θ, θ0) the solution to the problem max
x

[(1− θ0)n−1x− C(x, θ)]. Note that
x∗sym(θ) ≡ x∗(θ, θ). Differentiating U(θ0), we get

U ′(θ0) = (n− 1) max
x

[
(1− θ0)n−1x− C(x, θ0)

]
− (n− 1)(1− θ0)n−2

∫ 1

θ0

x∗(θ, θ0)dθ,

where we used Envelope theorem to evaluate the derivative of the second addend in U(θ0).
This may be further rewritten as

U ′(θ0)/(n− 1) = (1− θ0)n−2
(

(1− θ0)x∗(θ0, θ0)−
∫ 1

θ0

x∗(θ, θ0)dθ

)
− C(x∗(θ0, θ0), θ0).

(35)
In what follows, we prove that lim

θ0→1

U ′(θ0)

(1−θ0)
γ(n−1)
γ−1

< 0 which implies the result. It follows
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from (35) that

lim
θ0→1

U ′(θ0)

(1− θ0)
γ(n−1)
γ−1

= (n− 1)(L1 − L2),

where

L1 := lim
θ0→1

(1− θ0)n−2
(

(1− θ0)x∗(θ0, θ0)−
∫ 1

θ0
x∗(θ, θ0)dθ

)
(1− θ0)

γ(n−1)
γ−1

,

and
L2 := lim

θ0→1

C(x∗(θ0, θ0), θ0)

(1− θ0)
γ(n−1)
γ−1

.

To evaluate the limit L1, we use the first-order Taylor expansion of the function t →
x∗(t, θ0) at t = 1 and the second-order Taylor expansion of the function t→

∫ 1

t
x∗(θ, θ0)dθ

at t = 1. (The expansions are valid because x∗(θ, θ0) is differentiable in the first argument
by Implicit Function theorem.) After simplifications, we get

L1 = lim
θ0→1

(1− θ0)n−2 ((1− θ0)x∗θ(1, θ0)(θ0 − 1) + x∗θ(1, θ0)(1− θ0)2/2 + o((1− θ0)2))

(1− θ0)
γ(n−1)
γ−1

=

lim
θ0→1

−x∗θ(1, θ0)(1− θ0)n/2 + o((1− θ0)n)

(1− θ0)
γ(n−1)
γ−1

= 0,

because x∗θ(1, 1) is finite and n > γ(n−1)
γ−1 since γ > n.

Now consider the limit L2. Obviously, L2 ≥ 0. We need a stronger statement that
L2 > 0 which we prove below.

First, denoting lim
x→x+

C(x,1)
(x−x)γ := D > 0, by l’Hospital’s rule we get that lim

x→x+
Cx(x,1)

(x−x)γ−1 =

γD > 0. Note that this implies that Cx(x, 1) = 0. Thus,

lim
x→x+

C(x, 1)

[Cx(x, 1)]
γ
γ−1

=

[
lim
x→x+

[C(x, 1)]γ−1

[Cx(x, 1)]γ

] 1
γ−1

=

[
lim
x→x+

Dγ−1(x− x)γ(γ−1)

(γD)γ(x− x)(γ−1)γ

] 1
γ−1

=
D

(γD)
γ
γ−1

> 0.

Now substitute x = x∗(1, θ0) with θ0 → 1 to the above limit (this is valid since
x∗(1, 1) = x which follows from Cx(x, 1) = 0.). Note that by FOC Cx(x

∗(1, θ0), 1) ≡
(1− θ0)n−1. Thus,

0 <
D

(γD)
γ
γ−1

= lim
x→x+

C(x, 1)

[Cx(x, 1)]
γ
γ−1

= lim
θ0→1

C(x∗(1, θ0), 1)

[Cx(x∗(1, θ0), 1)]
γ
γ−1

= lim
θ0→1

C(x∗(1, θ0), 1)

(1− θ0)
γ(n−1)
γ−1

.

Finally, note that

0 < lim
θ0→1

C(x∗(1, θ0), 1)

(1− θ0)
γ(n−1)
γ−1

= lim
θ0→1

lim
θ→1

C(x∗(θ, θ0), θ)

(1− θ0)
γ(n−1)
γ−1

= lim
θ→1
θ0→1

C(x∗(θ, θ0), θ)

(1− θ0)
γ(n−1)
γ−1

= L2.
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To sum up,

lim
θ0→1

U ′(θ0)

(1− θ0)
γ(n−1)
γ−1

= (n− 1)(L1 − L2) = (n− 1)(0− L2) < 0.

C Proofs for Section 5

Proof of Proposition 8:

Proof. Part 1. By definition, if marginal costs are sufficiently convex the function q →
αξ(g′(q)))− q = α(1− J(F−1(1− g′(q))))− q is strictly quasi-convex. Quasi-convexity is
preserved under any monotone transformation of the argument, so plugging q = g′−1(1−
F (θ)), we get that the function α(1 − J(θ)) − g′−1(1 − F (θ)) is strictly quasi-convex as
well.

In Appendix E, we discuss the relation to Zhang (2017) at length and show the
equivalence between our models under Assumption 3. By Lemma 8 in Appendix B, the
optimal allocation z∗i (θ) and action schedules a∗i (θi) in our problem under Assumption 3
are the same as the optimal allocation z∗i (θ) and equilibrium action schedules a∗i (θi) in
the problem in Zhang (2017) in which an agent’s utility is V (a) + αθ − α, investment
costs are g(a) and the distribution of types is F̃ (θ) = 1− F (1− θ).

It remains to employ the analysis in Zhang (2017) to determine the structure of
optimal allocation under sufficiently convex and sufficiently concave marginal costs.

By following the same steps as in Zhang (2017), we reach the conclusion that the func-
tion α(1−J(θ))−g′−1(1−F (θ)) plays in our model exactly the same role as the function
J(θ)−KF̃ (θ) in Zhang (2017), with the proviso that θ is a cost type here and utility type
in Zhang (2017). We will invoke the appropriate generalizations of the results in Zhang
(2017) with the expressions “strictly increasing” and “strictly decreasing” interchanged
(again as θ increases costs in this paper and decreases costs in Zhang (2017)). As the
function α(1−J(θ))−g′−1(1−F (θ)) is strictly quasi-convex, it either (i) strictly decreas-
ing, (ii) strictly increasing, or (iii) first strictly decreasing and then strictly increasing. In
the case (i) by Corollary 1, part I in Zhang (2017), the optimal mechanism is symmetric
so the quality schedules (16) with θ0 = 1 are optimal. In the case (ii) by Theorem 1, part
I in Zhang (2017), the optimal mechanism is completely asymmetric so that one bidder
gets the contract with probability 1. This corresponds to quality schedules (16) with
θ0 = 0. Finally, in the case (iii) by Theorem 1 in Zhang (2017) there exists θ0 ∈ [0, 1]

such that an optimal mechanism is symmetric for θ < θ0 while having [θ0, 1] is a “favored
bidder interval”. That is, for θ > θ0 one bidder is “favored” and gets the contract with
probability 1 − F (θ0); and the other bidder is “unfavored” and gets the contract with
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probability 1−F (1) = 0. This implies the quality schedules (16) with that particular θ0.
Part 2 is proved analogously.

Proof of Proposition 9:

Proof. We shall show that the score and quality strategies specified in the proposition
constitute a BNE in the score floor auction.

We again split the analysis of the optimality of the conjectured strategy into (i) the
choice of the score when quality is chosen optimally and (ii) the choice of quality when
the score is chosen at the equilibrium level.

Part (ii), when the score is above the floor, follows from the analysis of the symmetric
case in Proposition 2. When the unfavored firm is playing the score floor, she is guaranteed
to lose. Thus, she produces the lowest possible quality q = 0, effectively exiting. When
the favored firm is playing the score floor, she faces the same probability of winning as
the threshold type PWsym(θ0) and receives the bonus, independently of her own type.
Moreover, type and quality do not interact under Assumption 3 when evaluating the
costs. Thus, she produces the same quality as the threshold type, q∗sym(θ0).

To prove part (i), suppose a firm i bids the score S∗(τ |θ0) while the alleged BNE
strategy is S∗i (θ|θ0). We shall show that it is optimal for the firm to pick τ = θ.

Let Πsym
max(τ |θ) by the profit function in the symmetric mechanism considered in the

proof of Proposition 2 (the maximal-over-quality profit if the score bid is S∗(τ)). Let
Πfloor,1

max (τ |θ, θ0) be the analogous profit function of the favored bidder in the score-floor
asymmetric mechanism with threshold θ0. Let Πfloor,2

max (τ |θ, θ0) be the profit function of
the unfavored bidder in this mechanism.

Recall that IR(a, b) :=
∫ b
a
[(1−F (u))CP

θ (q∗(1−F (u), u), u)+CI
θ (q∗(1−F (u), u), u)]du.

It is not hard to see that, given the equilibrium score strategies, Πsym
max(τ |θ) and Πfloor,i

max (τ |θ, θ0)
are related for τ ≤ θ0 by

Πfloor,1
max (τ |θ, θ0) = Πsym

max(τ |θ)− IR(θ0, 1) +B (36)

Πfloor,2
max (τ |θ, θ0) = Πsym

max(τ |θ)− IR(θ0, 1), (37)

where B is the bonus for the favored bidder.
We consider two cases, with two sub-cases each.
Case 1a. Favored bidder, true type θ < θ0. Bidding a score S ≥ Sr is the same

as bidding a score S∗(τ) for some τ ≤ θ0. By (36), Πfloor,1
max (τ |θ, θ0) differs from Πsym

max(τ |θ)
by a constant, hence it is maximal at the same value of τ which, as shown in the proof of
Proposition 2, is τ = θ. Thus, if the bidder enters, it is optimal to bid S∗(θ), as desired.
And the bidder will enter, as her profit when choosing τ = θ is

Πsym
max(θ|θ)− IR(θ0, 1) +B = IR(θ, 1)− IR(θ0, 1) +B = IR(θ, θ0) +B > 0,
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where the first equality is from the proof of Proposition 2, the second is by the definition
of IR(a, b), and the inequality is by the definition of IR(a, b) and B.

Case 1b. Favored bidder, true type θ > θ0. We need to show that it is optimal
for the favored bidder to bid the reserve score Sr = S∗(θ0), that is, to choose τ = θ0.
Πfloor,1

max (τ |θ, θ0) differs from Πsym
max(τ |θ) by a constant, but by Lemma 5, Πsym

max(τ |θ) is for
every θ single-peaked in τ with the peak at τ = θ. It follows that Πfloor,1

max (τ |θ, θ0) has the
same property. Thus, for τ < θ0 < θ we have

Πfloor,1
max (τ |θ, θ0) < Πfloor,1

max (θ0|θ, θ0) < Πfloor,1
max (θ|θ, θ0).

The first inequality says that for the types θ > θ0 it is optimal to bid the reserve score
Sr = S∗(θ0|θ0). It remains to check that the mechanism is individually rational for the
favored bidder with a type θ > θ0, with the type θ = 1 having zero profit. This is ensured
by the correct value of bonus B. Indeed,

Πfloor,1
max (θ0|θ, θ0) =Πsym

max(θ0|θ)− IR(θ0, 1) +B ≥

Πsym
max(θ0|1)− IR(θ0, 1) +B =

Πsym
max(θ0|1)− Πsym

max(θ0|θ0) +B =

−B +B = 0,

where the inequality follows from the fact that Πsym
max(τ |θ) is decreasing in θ, the second

equality follows from Proposition 2 and the third equality follows from the fact that
Πsym

max(θ0|1) − Πsym
max(θ0|θ0) = −

∫ 1

θ0
[(1 − F (θ0))C

P
θ (q∗(1 − F (θ0), u), u) + CI

θ (...)]du = −B
for B = α(1 − θ0)(1 − F (θ0), CP

θ = α and CI
θ = 0. For θ = 1, the inequality holds as

equality, so the type θ = 1 gets a profit of 0.
Case 2a. Unfavored bidder, true type θ < θ0. By the proof of Proposition 2,

τ = θ maximizes Πsym
max(τ |θ). By (37), for τ ≤ θ0 Πfloor

max (τ |θ, θ0) differs from Πsym
max(τ |θ) by

a constant, thus τ = θ maximizes Πfloor
max (τ |θ, θ0) over all τ ≤ θ0. The profit from bidding

τ = θ is, by (37),

Πfloor,2
max (τ |θ, θ0) = Πsym

max(θ|θ)− IR(θ0, 1) =IR(θ, 1)− IR(θ0, 1) = IR(θ, θ0) > 0,

On the other hand, bidding a score S < Sr = S∗(θ0|θ0) would yield the bidder a maximal
profit of 0 and so is no better than bidding S∗(θ|θ0). Thus, choosing τ = θ is optimal
and individually rational.

Case 2b. Unfavored bidder, true type θ > θ0. Choosing any τ ≤ θ0 would yield
such a bidder a profit of

Πsym
max(τ |θ)− IR(θ0, 1) ≤ Πsym

max(θ|θ)− IR(θ0, 1) = IR(θ, 1)− IR(θ0, 1) = −IR(θ0, θ) < 0,
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where the inequality follows from the fact that τ = θ maximizes Πsym
max(τ |θ) by Proposi-

tion 2. Thus, it is better to choose the score floor, effectively exiting the auction. The
unfavored bidder with type θ = 1 gets a profit of 0.

Proof of Proposition 10:

Proof. We shall show that the score and quality strategies specified in the proposition
constitute a BNE in score ceiling auction.

We again split the analysis of the optimality of the conjectured strategy into (i) the
choice of the score when quality is chosen optimally and (ii) the choice of quality when
the score is chosen at the equilibrium level.

Part (ii), when the score is below the ceiling, follows from the analysis of the symmetric
case in Proposition 2. When the favored firm is playing the score ceiling, she is guaranteed
to win. Thus, she produces the optimal monopolistic quality q∗sym(0). When the unfavored
firm is playing the score ceiling, she faces the same probability of winning as the threshold
type PWsym(θ0) and pays a kickback, independently of her own type. Moreover, type
and quality do not interact under Assumption 3 when evaluating the costs. Thus, she
produces the same quality as the threshold type, q∗sym(θ0).

To prove part (i), suppose a firm i bids the score S∗(τ) while the alleged BNE strategy
is S∗i (θ). We shall show that it is optimal for the firm to pick τ = θ.

Recall that Πsym
max(τ |θ) is the profit function in the symmetric mechanism considered in

the proof of Proposition 2 (the maximal-over-quality profit if the score bid is S∗(θ)). Let
Πceil,1

max (τ |θ, θ0) be the analogous profit function of the favored bidder in the score-ceiling
asymmetric mechanism with threshold θ0. Let Πceil,2

max (τ |θ, θ0) be the profit function of the
unfavored bidder in this mechanism.

It is clear that it is never optimal for the favored bidder to bid a score S > S̄ since
bidding a slightly lower score gives her the same winning probability of 1, but ensures a
higher price. At the same time, the unfavored bidder would not bid S > S̄ since her bid
won’t count in that case. So both bidders won’t bid scores higher than S̄ = S∗(θ0). This
means that we can restrict attention to deviations τ ≥ θ0.

We again consider two cases, with two sub-cases each.
For i = 1, 2 and all τ > θ0

Πceil,i
max (τ |θ, θ0) = Πsym

max(τ |θ). (38)

Case 1a. Favored bidder, true type θ > θ0. By (38), for τ > θ0 Πceil,1
max (τ |θ, θ0) =

Πsym
max(τ |θ), so unprofitability of such deviations follows from Proposition 2.
Now consider the deviation τ = θ0 whereby the favored bidder bids S̄ = S∗(θ0) and
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wins for sure. In this case, she will get a profit of

Πceil,1
max (θ0|θ, θ0) = max

q
(q − g(q))− αθ − S̄ −K.

By definition of the score ceiling,

S̄ = S∗sym(θ0) = max
q

[
q − g(q)

1− F (θ0)

]
− IR(θ0, 1)

1− F (θ0)
,

while the kickback K is by (20):

K = max
q

[q − g(q)]−max
q

[
q − g(q)

1− F (θ0)

]
+ α

F (θ0)

1− F (θ0)

∫ 1

θ0

(1− F (u))du

= max
q

[q − g(q)]−max
q

[
q − g(q)

1− F (θ0)

]
+

F (θ0)

1− F (θ0)
IR(θ0, 1).

Taking stock,
Πceil,1

max (θ0|θ, θ0) = IR(θ0, 1)− α(θ − θ0).

Thus,

Πceil,1
max (θ|θ, θ0)− Πceil,1

max (θ0|θ, θ0) = Πsym
max(θ|θ)− Πceil,1

max (θ0|θ, θ0) =

IR(θ, 1)− IR(θ0, 1) + α(θ − θ0) = α(θ − θ0)− IR(θ0, θ) =

α(θ − θ0)− α
∫ θ

θ0

(1− F (u))du = α

∫ θ

θ0

F (u)du > 0, (39)

where the first equality follows from (38) and the inequality follows from θ > θ0. This
means that the deviation from τ = θ to τ = θ0 is unprofitable as well, so bidding τ = θ

is optimal, as desired.
The above analysis demonstrates the role of the kickback — without it the final

inequality would not necessarily hold and some types θ > θ0 would switch to bidding S̄
with guaranteed victory and choose a different (higher) quality as a result; the desired
quality schedule would not be implemented.

Case 1b. Favored bidder, true type θ < θ0. According to the proposed equilib-
rium, such favored bidder types should find it optimal to bid S̄ = S∗(θ0), i.e., τ = θ0.

For θ < θ0, the inequality (39) is reversed, so

Πceil,1
max (θ0|θ, θ0) > Πsym

max(θ|θ).

But by Proposition 2, Πsym
max(θ|θ) > Πsym

max(τ |θ) for all τ 6= θ, including τ > θ0. Thus, for
τ > θ0,

Πceil,1
max (θ0|θ, θ0) > Πsym

max(θ|θ) > Πsym
max(τ |θ) = Πceil,1

max (τ |θ, θ0),
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where the last equality follows from (38). This implies the unprofitability of all deviations
τ > θ0.

Case 2a. Unfavored bidder, true type θ > θ0. By Proposition 2, Πsym
max(θ|θ) ≥

Πsym
max(τ |θ) for all τ , including τ ≥ θ0. Thus, by (38),

Πceil,2
max (θ|θ, θ0) ≥ Πceil,2

max (τ |θ, θ0)

for all τ ≥ θ0. Thus, it is optimal for the unfavored bidder with type θ > θ0 to bid S∗(θ)
among all S ≤ S̄, as desired.

Case 2b. Unfavored bidder, true type θ < θ0. By Lemma 5 (single-peakedness
of Πsym

max(τ |θ)), for θ < θ0 ≤ τ we have Πsym
max(θ0|θ) ≥ Πsym

max(τ |θ). Hence, by (38),

Πceil,2
max (θ0|θ, θ0) ≥ Πceil,2

max (τ |θ, θ0)

for τ ≥ θ0. Thus, it is optimal for the unfavored bidder with type θ < θ0 to bid S∗(θ0)
among all S ≤ S̄, as desired.

Finally, let us note that in all 4 cases the type θ = 1 gets a profit of Πsym
max(1|1) = 0, so

the mechanism is individually rational, and the least-efficient type gets zero profit.

Derivation for the constant-elasticity example:

Proof. It follows from Corollary 1 that if γ > 2 an optimal mechanism is either score
floors, sole-sourcing, or symmetric while if γ < 2 an optimal mechanism is either score
ceilings, sole-sourcing, or symmetric.

For a score floors mechanism, the FOC for the optimal threshold θ0 is

ϕ(1− θ0, θ0) =

∫ 1

θ0

x∗(1− θ0, θ)dθ. (40)

Plugging in ϕ(z, θ) = γ−1
γ
z

γ
γ−1 −2αθz and x∗(z, θ) = ϕ′z = z

1
γ−1 −2αθ, we get an equation

which is under θ0 < 1 simplified to

(1− θ0)
γ−2
γ−1 =

1

αγ
.

Sole-sourcing corresponds to θ0 = 0 and it obtains if the derivative of the objective at
θ0 = 0 is non-positive. Thus, it will obtain if 1 − 1

αγ
≤ 0, α ≤ 1/γ, otherwise there will

be a θ0 ∈ (0, 1) satisfying FOC and giving a score floors mechanism.
For a score ceiling mechanism, the FOC for the optimal threshold θ0 is

ϕ(1, θ0)− ϕ(1− θ0, θ0) =

∫ θ0

0

x∗(1− θ0, θ)dθ. (41)
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Plugging in ϕ and x∗, we get

γ − 1

γ

(
1− (1− θ0)

γ
γ−1

)
− αθ20 = θ0(1− θ0)

1
γ−1 . (42)

In general, there is no closed-form solution to this equation. Sole-sourcing now corre-
sponds to θ0 = 1 while the symmetric solution to θ0 = 0. To obtain an α threshold
separating the sole-sourcing region from the score ceiling region, plug in θ0 = 1 to (42).
To obtain an α threshold separating the symmetric solution region from the score ceiling
region, solve (42) for α and then take the limit when θ0 → 0.

D Proofs for Section 6

Proof of Proposition 11:

Proof. Recall that J(θ) ≡ θ + F (θ)/f(θ). By Assumption 2, J(θ) is increasing. Under
Assumption 3, ϕ(z, θ) = maxq(q · z− g(q))−αJ(θ)z. Denote H(z) := maxq(q · z− g(q)).

Consider the determination of the optimal threshold θ0 for the score floor mechanism
first. Rewriting (40), we get that

U ′θ0 = ϕ(1− F (θ0), θ0)f(θ0)− f(θ0)

∫ 1

θ0

ϕz(1− F (θ0), θ)dθ =

f(θ0)

(
H(1− F (θ0))− αJ(θ0)(1− F (θ0))−

∫ 1

θ0

(H ′(1− F (θ0))− αJ(θ))f(θ)dθ

)
.

Thus,

U ′′θ0,α = f(θ0)(1− F (θ0))

(∫ 1

θ0
J(θ)f(θ)dθ

1− F (θ0)
− J(θ0)

)
> 0,

where the inequality follows from the fact that (θ) is strictly increasing. By the standard
monotone comparative statics theorem, the optimal θ∗0(α) must be a weakly increasing
function.

Now consider the score ceiling mechanism. Rewriting ..., we get that

U ′θ0 = ϕ(1, θ0)f(θ0)− ϕ(1− F (θ0), θ0)f(θ0)− f(θ0)

∫ θ0

0

ϕz(1− F (θ), θ)f(θ)dθ =

f(θ0)

(
H(1)− αJ(θ0)−H(1− F (θ0)) + αJ(θ0)(1− F (θ0)−

∫ θ0

0

(H ′(1− F (θ0))− αJ(θ))f(θ)dθ

)
.

Thus,

U ′′θ0,α = f(θ0)F (θ0)

(∫ θ0
0
J(θ)f(θ)dθ

F (θ0)
− J(θ0)

)
< 0,

where the inequality follows from the fact that (θ) is strictly increasing. By the standard
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monotone comparative statics theorem, the optimal θ∗0(α) must be a weakly decreasing
function.

Proof of Proposition 12:

Proof. The efficient mechanism is characterized by a statement analogous to Proposition 8
in which in the definition of the function ξ(·) one replaces J(θ) with just θ. With F (θ) = θ

J(θ) is proportional to θ and thus Corollary 1 applies fully to the efficient mechanisms
as well. Hence, an optimal mechanism is either a “score floors” mechanism or a “score
ceilings” mechanism. Now note that the efficient mechanism in a given setting 1 is the
same as a buyer-optimal mechanism in another setting 2 such that virtual costs in setting
2 are equal to costs in setting 1. If CP = αθ, the virtual production costs CP + CP

θ F/f

are exactly 2αθ. Thus, the efficient mechanism for CP = 2αθ is equal to the buyer-
optimal mechanism for CP = αθ. So we need to compare the buyer-optimal mechanism
for CP = αθ with the buyer-optimal mechanism for CP = 2αθ. Since α halves and
thus decreases, by Proposition 11 the optimal threshold moves in a way that makes the
mechanism less symmetric. Thus, the efficient mechanism is less symmetric than the
buyer-optimal mechanism.

Proof of Proposition 13

Proof. Recall that ϕ(z, θ) ≡ maxx (zx− C(x, θ)).
For C(x, θ) = g(x + 2αθ), ϕ(z, θ) = H(z) − 2αθz for some function H(z). Denote

h(e) := H(z)/z. First, we show that the condition that g(t)√
g′(t)

is strictly increasing implies

that h′(z)z3/2 is increasing.
Indeed, given that g(0) = 0 it is easy to show that

h(e) =

 0, z < g′(0);

g′−1(z)− g(g′−1(z))
z

, z ≥ g′(0).

and thus after simplifications

h′(z)z3/2 =

 0, z < g′(0);

g(g′−1(z))√
z

, z ≥ g′(0).

As g′−1(z) is increasing and g(t)√
g′(t)

is increasing by assumption, h′(z)z3/2 is increasing.

Now, the principal’s payoff from playing the optimal symmetric mechanism among k
remaining bidders is

U(k) =

∫ 1

0

k
(
H((1− θ)k−1)− 2αθ(1− θ)k−1

)
dθ. (43)
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We shall show that U(k) is quasi-convex when k is treated as a continuous variable20

This implies the result.
Using the substitution y = (1− θ)k−1, U(k) may be rewritten as

U(k) =
k

k − 1

∫ 1

0

(
H(y)− 2α(1− y

1
k−1 )y

)
y

2−k
k−1dy =

k

k − 1

∫ 1

0

(
h(y)− 2α(1− y

1
k−1 )

)
y

1
k−1dy.

Now substitute δ := 1
k−1 . Because this is a monotone transformation, it is sufficient to

show that U(k(δ)) is quasi-convex in δ. When k = 1, we set δ = +∞.

U = (1+δ)

∫ 1

0

(
h(y)− 2α(1− yδ)

)
yδdy = (1+δ)

∫ 1

0

h(y)yδdy−2α(1+δ)

∫ 1

0

(1−yδ)yδdy.

We now compute U ′δ. Integrating the first term by parts we get

(1 + δ)

∫ 1

0

h(y)yδdy =

∫ 1

0

h(y)dy1+δ = h(1)−
∫ 1

0

h′(y)y1+δdy.

Thus, (
(1 + δ)

∫ 1

0

h(y)yδdy

)′
δ

=

∫ 1

0

h′(y)y1+δ ln(1/y)dy.

The second integral can be computed explicitly:

(1 + δ)

∫ 1

0

(1− yδ)yδdy =
δ

2δ + 1
.

Thus,(
(1 + δ)

∫ 1

0

(1− yδ)yδdy
)′
δ

=
1

(2δ + 1)2
=

1

4

1

(δ + 1
2
)2

=
1

4

∫ 1

0

yδ−
1
2 ln(1/y)dy,

where the last equality may be verified by integration by parts.
Tacking stock,

U ′δ =

∫ 1

0

h′(y)y1+δ ln(1/y)dy − 2α

4

∫ 1

0

yδ−
1
2 ln(1/y)dy

=

(∫ 1

0
h′(y)y1+δ ln(1/y)dy∫ 1

0
yδ−

1
2 ln(1/y)dy

− 2α

4

)∫ 1

0

yδ−
1
2 ln(1/y)dy.

Now, we shall show that the expression in parentheses above is increasing in δ. This will
imply that U ′δ(δ) is of increasing sign and hence U(δ) is quasi-convex.

20The integrand in (43) is quasi-concave in k. However, a sum (integral) of quasi-concave functions
can be quasi-convex and not quasi-concave.
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Rewrite ∫ 1

0
h′(y)y1+δ ln(1/y)dy∫ 1

0
yδ−

1
2 ln(1/y)dy

=

∫ 1

0

[
h′(y)y

3
2

]
yδ−

1
2 ln(1/y)dy∫ 1

0
yδ−

1
2 ln(1/y)dy

and consider the following family of density functions on (0, 1) parametrized by δ:

f(y|δ) =
yδ−

1
2 ln(1/y)∫ 1

0
yδ−

1
2 ln(1/y)dy

.

It is not hard to show that for any δ1 < δ2 f(y|δ2) first-order stochastically dominates
f(y|δ1).21 Thus, for any increasing function b(y)

Ey∼f(·|δ)(b(y)) =

∫ 1

0
[b(y)] yδ−

1
2 ln(1/y)dy∫ 1

0
yδ−

1
2 ln(1/y)dy

is increasing in δ. However, we have shown above that the function h′(y)y3/2 is increasing
indeed.

E Relation to Zhang (2017)

Informal discussion

In this section, we compare and contrast our model with that of Zhang (2017) and
Gershkov et al. (2021). Since our settings differ in not one but two respects, we introduce
an intermediate hypothetical setting, to facilitate the comparison, see table below.

Setting 1 (Zhang 2017) 2 3 (Ours)
Agent’s action is: Non-contractible Contractible Contractible

Benefits of action accrue to: Agent Agent Principal

Settings 1 and 2 are in general not equivalent. Technically, the source of non-
equivalence is the different order of virtualization and optimization over action that
happen in the course of solving the mechanism design problem. Namely, in setting 1
one first performs (agent’s) optimization over action and then virtializes the obtained
maximized utility while in setting 2 — when an agent’s action becomes contractible —
one would first virtualize the agent’s utility for a given action and after that optimize the
principal’s utility over agent’s action. However, it is not hard to show that in additively
separable environments (when the agent’s benefits of action are additively separable in
action and type) the order of optimization and virtualization does not matter, so the
settings 1 and 2 are equivalent.

21For this, note that f(y|δ2)/f(y|δ1) is increasing in y and thus apart from endpoints the two densities
cross only once, with f(y|δ2) crossing f(y|δ1) from below.
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Settings 2 and 3, on the other hand, are always equivalent. Under a contractible
agent’s action the optimal action and allocation schedules do not depend on whether
benefits of an agent’s action accrue to the agent or the principal as these benefits can
be freely moved from the agent to the principal or the other way around using action-
dependent transfers.

A formal reduction to Zhang (2017)

Take an instance of our problem under Assumption 3. To convert it to an instance of the
problem in Zhang (2017) (with more general, possibly non-quadratic investment costs),
we proceed in 3 steps.

Before step 1, we rename “quality” q to “action” a to achieve consistency with the
terminology in Zhang (2017). Thus, instead of quality functions qi(θi) we will be talking
about action profiles ai(θi).

Step 1: moving benefits of action from principal to agent

Lemma 6. If an agent’s action is contractible, the optimal allocation and action schedules
ai(θi), zi(θ) in our problem with principal’s gross utility V (a), production costs CP (a, θ),
and some investment costs are the same as in our problem with principal’s gross utility
of 0, production costs CP (a, θ)− V (a) and the same investment costs.

Proof. Note that ∂
∂θ

(CP (a, θ)−V (a)) = ∂
∂θ

(CP (a, θ)). Thus, the virtual production costs
in the new problem are also shifted by V (a), as the production costs themselves. Thus,
the objective function in the new problem is

E
n∑
i=1

(
0− (C̃P (ai(θi), θi)− V (ai(θi)))zi(θ)− C̃I(ai(θi), θi)

)
,

while the objective function in the original problem is

E
n∑
i=1

(
(V (ai(θi))− C̃P (ai(θi), θi))zi(θ)− C̃I(ai(θi), θi)

)
,

which is the same thing. Thus, the optimal action and allocation profiles coincide.

Step 2: making action non-contractible

Lemma 7. If production costs are additively separable, i.e., CP (a, θ) = l(θ) − b(a), the
principal’s gross utility is 0 and the investment costs do not depend on agent’s type, then
the optimal allocation z∗i (θ) when agents’ actions are contractible is the same as when
agents’ actions are non-contractible, as in Zhang (2017). The optimal action profiles
a∗i (θi) when agents’ actions are contractible are the same as equilibrium action profiles
under z∗i (θ) when agents’ actions are non-contractible.
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Proof. With CP (a, θ) = l(θ)− b(a), the virtual production costs are given by C̃P (a, θ) =

l(θ) − b(a) + l′(θ)F (θ)
f(θ)

. As CI
θ = 0, the virtual investment costs equal investment costs

themselves, i.e., C̃I(a, θ) = CI(a, θ). We can write just CI(a) for the both virtual and
non-virtual investment costs. Thus, when agents’ actions are contractible, the principal’s
objective function is

E
n∑
i=1

((
0− l(θi)− l′(θi)

F (θi)

f(θi)
+ b(ai(θi))

)
zi(θ)− CI(ai(θi))

)
. (44)

The principal maximizes this with respect to zi(θ) and ai(θi). Denote by z̃i(θi) the interim
allocation of agent i, that is, z̃i(θi) ≡ Ezi(θ). Suppose the principal first chooses zi(θ)

and then chooses ai(θi) given zi(θ). Denote by aPi (θi)[zi(θ)] the agent’s i action which is
optimal for the principal given zi(θ). From (44), it is clear that given zi(θ), the principal
will choose

aPi (θi)[zi(θ)] = arg max
a

(
b(a)z̃i(θi)− CI(a)

)
.

Now suppose the agents’ actions are not contractible. In this case, the principal only
chooses zi(θ) in (44) while ai(θi) is determined from agent’s optimization given zi(θ).
Denote by t̃i(θi) the interim payment to the agent in a direct mechanism. Note that it
is not conditioned on ai since the action is not contractible. Given z̃i(θi) and t̃i(θi), the
agent i of type θi reports the type truthfully and chooses ai to maximize

Πi = t̃i(θi)− CP (ai, θi)z̃i(θi)− CI(ai) = t̃i(θi)− (l(θi)− b(ai))z̃i(θi)− CI(ai).

The agent will clearly choose

aAi (θi)[zi(θ)] = arg max
a

(
b(a)z̃i(θi)− CI(a)

)
.

Thus, aAi (θi)[zi(θ)] = aPi (θi)[zi(θ)] for any allocation zi(θ). This implies that the princi-
pal’s objective as a function of zi(θ) only is the same regardless of whether the agents’
actions are contractible or not. Thus, the optimal allocation z∗i (θ) is the same regardless
of whether the agents’ actions are contractible or not. As aAi (θi)[zi(θ)] = aPi (θi)[zi(θ)]

for any allocation zi(θ), the equality holds for the optimal z∗i (θ) as well, establishing the
second claim of the lemma.

Note that the above argument does not work when the production costs are not addi-
tively separable and/or the investment costs depend on type. In this case, the principal’s
preferred action given zi(θ) satisfies

aPi (θi)[zi(θ)] = arg max
a

(
−C̃P (a, θi)z̃i(θi)− C̃I(a, θi)

)
.
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while under non-contractible actions the agent would choose

aAi (θi)[zi(θ)] = arg max
a

(
−CP (a, θi)z̃i(θi)− CI(a, θi)

)
,

which is in general different from aPi (θi)[zi(θ)].

Step 3: converting the optimal-procurement problem to an optimal-selling-
procedure problem and wrapping up.

Recall Assumption 3: the principal’s utility is V (a), production costs are CP (a, θ) =

αθ, investment costs are CI(a, θ) = g(a) and the distribution of types is F (θ).

Lemma 8. The optimal allocation z∗i (θ) and action profiles a∗i (θi) in our problem under
Assumption 3 are the same as the optimal allocation z∗i (θ) and equilibrium action profiles
a∗i (θi) in the problem in Zhang (2017) in which an agent’s utility is V (a) + αθ − α,
investment costs are g(a) and the distribution of types is F̃ (θ) = 1− F (1− θ).

Proof. By Lemma 6, the optimal allocation and action profiles in our problem are same
as in the problem with principal’s gross utility of 0, production costs of αθ− V (a), same
investment costs of g(a) and same distribution of types F (θ). Since the cost function
CP (a, θ) = αθ − V (a) is additively separable and other conditions of Lemma 7 hold, by
Lemma 7 the optimal profiles are the same as in the procurement version of the problem
in Zhang (2017) with these costs functions and distribution of types F (θ).

To translate this to an original optimal selling problem from Zhang (2017), we redefine
type θZh := 1 − θ to make the agent’s utility depend positively on type where the
superscript Zh stands for “Zhang”. The cdf of θZh is F̃ (θZh) = 1 − F (1 − θZh). The
production costs become α(1 − θZh) − V (a). Finally, an agent’s utility from consuming
a good is naturally the negative production costs.
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