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Introduction

A nonparametric estimator of Guerre-Perrigne-Vuong (GPV) and
Li-Perrigne-Vuong is typically used for counterfactual analysis

v̂ = b +
1

M − 1
F̂ (b)

f̂ (b)
, where F , f are the cdf, pdf of bids

and M is the number of bidders. Only private values, of course.

Pros:

• does not require (latent) value or cost data
• does not require a parametric specification
• calculates profit margins per-bid
• conceptually simple (hats over f ’s)
• very fast

Due to separation of profit margins from the covariates, it is only
O(n2) + O(nc2) compared to, say, NLLS O(n2c2), where c is the
number of features.
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Introduction

Cons:

• only pointwise inference (no uniform)

• density in the denominator - unstable

• still quite slow - roughly O(n2) without binning

And if I want to have different sizes of auctions,

v̂ = b +

∑M
k=1 pk F̂

k−1(b)∑M
k=1 pk(k − 1)F̂ k−2(b)f̂ (b)

,

where pk is a share of auctions with k bidders.
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Introduction

But what if we use quantiles instead of bids?

v(u) = Q(u) +

[ ∑M
k=1 pku

k−1∑M
k=1 pk(k − 1)uk−2

]
q(u),

where Q, q are the quantile function and quantile density.

Plug-in estimator

v̂(u) = Q̂(u) +

[ ∑M
k=1 p̂ku

k−1∑M
k=1 p̂k(k − 1)uk−2

]
q̂(u).
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Introduction

v̂(u) = Q̂(u) +

[ ∑M
k=1 p̂ku

k−1∑M
k=1 p̂k(k − 1)uk−2

]
q̂(u)

Pros:

• admits varying number of bidders

• no density in the denominator

• still conceptually simple (hats over q’s)

• linear in Q, q, and, in fact, just q

But more than that, typical functionals are linear in v(u) and thus, in the
quantile density of bids q(u).
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Introduction

Typical functionals

TS(u∗) =

∫
r∗
xdFM(x) =

∫
u∗

v(u)duM

BS(u∗) =

∫
r∗
(1 − F (x))FM−1(x)dx =

∫
u∗
(1 − u)uM−1dv(u)

REV (u∗) = TS(u∗)−M · BS(u∗)

Uniform inference on q(·) ⇒ uniform inference on TS, BS, REV, where
uniform is over the counterfactual exclusion levels u∗ (i.e. reserve prices).

This would allow us to test optimality of mechanisms, which in the most
natural exercise in auction literature.
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Our contribution

A novel procedure for counterfactual analysis

• estimate {pk}Mk=1,Q(u) and q(u)

• estimate v(u) - the quantile function of latent values

• test uniform hypothesis about functionals that are linear in v(u)

We get a substantial improvement over GPV.

• a novel algorithm (two actually) for inference

• the estimator becomes almost pivotal

• elegantly handle random bidders

• lower complexity from O(n2) to O(n log n) due to FFT

We prove validity of inference and verify it numerically.
Also, we developed a Python package with a natural fit-predict interface.
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First ingredient

A kernel estimator of quantile density is a weighted average of bid
spacings, introduced by Jones in the 80’s.

q̂h(u) =

∫ 1

0
Kh(u − z) dQ̂(z) =

1
n

n−1∑
i=1

Kh

(
u − i

n

)
(b(i+1) − b(i))

• b(i) is the i-th order statistic of b1, . . . , bn

• h > 0 is bandwidth

• K is a kernel function, Kh(z) := h−1K (h−1z)
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First ingredient

The computational complexity of this estimator is remarkably small.

q̂h(u) =

∫ 1

0
Kh(u − z) dQ̂(z) =

1
n

n−1∑
i=1

Kh

(
u − i

n

)
(b(i+1) − b(i))

• sort the bids is O(n log n)

• compute spacings is O(n)

• convolve spacings with a static filter is less than O(n log n)

In Python, it is only three lines of code: np.sort, np.diff, np.convolve.
You should not be writing the loop by hand.
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Second ingredient

An approximation of the quantile density process by a sample average
(cf. classical Bahadur-Kiefer representation) from the 60’s

√
nh

q̂h(u)− q(u)

q(u)
= Z∗

n (u) + Oa.s.

(
h1/2 + h−1/2n−1/4l(n)

)
,

Z∗
n (u) = − 1√

nh

n∑
i=1

[
K

(
u − F (bi )

h

)
− EK

(
u − F (bi )

h

)]
,

Z∗
n (u) ≈ −

√
nh

[
f̂ Uh (u)− Ef̂ Uh (u)

]
, Ef̂ Uh (u) ≈ 1.

where

• l(n) = (log n)1/2(log log n)1/4

• f Uh (u) is the classical KDE estimator with uniform data F (bi )
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Second ingredient

Bahadur-Kiefer expansion says

q̂h(u)

q(u)
− 1 ≈ 1 − f̂ Uh (u)

q̂Uh (u)− 1 ≈ q̂h(u)

q(u)
− 1

To simulate from right-hand side, we just simulate a standard kernel
density estimator f̂ Uh (u) with uniform data.

To simulate from left-hand side, we simulate our kernel quantile-density
estimator q̂Uh (u) with uniform data (in fact, with any data) and scale it.
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Third ingredient

Until recently, we did not know much about local empirical processes, see
Rio (1994), Chernozhukov, Chetverikov & Kato (2014, 2016), to argue
the validity of the simulation from either left- and right-handside of BK.

Basically q̂h(u), f̂
U
h (u), q̂Uh (u) all diverge (as functions), which rules out

direct asymptotic inference via a known limiting distribution.

But, they stay close to each other, if we use the exact same sequence of
kernels. Which is not obvious.

This allows for indirect inference via a known sequence of distributions.
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A powerful estimator

Combining the technology from different eras (60’s, 80’s and 00’s) we
put forward an estimator that has a powerful combo

• admits pivotal representation

• replaces O(n2) with O(n log n)

• allows for inference on many natural counterfactuals
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A signal to the community

For 20 years GPV has reigned over empirical auctions literature, yet
inference on even basic functionals was out of reach. Thus natural
hypotheses about optimal mechanisms could not be tested

Pointwise inference on f (the density of valuations) was within reach, but
it does not really help.
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A signal to the community

It is widely (in my experience) believed that you do not fully estimate the
primitives unless you get you hands on the density of valuations f .

In our empirical application, we never even touched the value density, yet,
we achieved all of our goals (tested optimality).

Perhaps, v(u) is a better container of model primitives than f (b).
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A cool know-how

You wish to test whether a positive reserve price, if set optimally, could
increase the revenue.

You plot the revenue as function of the reserve price (actually exclusion
levels, or quantiles), and plot uniform confidence bands around it.

If the lower band never gets over the default revenue, this means that the
revenue gains at the optimal mechanism are statistically insignificant.
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A cool know-how

Here are confidence intervals and bands for the counterfactual revenue
from the empirical application with Phil Haile’s USFS data.

Testing based on confidence intervals is only valid if the researcher is
picking the counterfactual reserve price beforehand. 16
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• Spacings are cool
• Ingraham 2005
• Loertscher, S. and L. M. Marx, 2020

• Highlighted the quantile approach
• Enache, A. and J.P. Florens, 2012
• Luo Wan, F, 2018

• Chose "the hard way" with the f density
• Marmer, V et al 2012, 2019, 2021
• Zincenko, F, 2021
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Thank you!
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